論文の概要: Out of Distribution Detection on ImageNet-O
- arxiv url: http://arxiv.org/abs/2201.09352v1
- Date: Sun, 23 Jan 2022 20:02:08 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-26 07:43:41.049925
- Title: Out of Distribution Detection on ImageNet-O
- Title(参考訳): ImageNet-Oにおける分布検出の実際
- Authors: Anugya Srivastava, Shriya Jain and Mugdha Thigle
- Abstract要約: Out of Distribution(OOD)検出は、マシンラーニングシステムを堅牢化するための重要な部分である。
ImageNet-Oデータセットは、ImageNetトレーニングされたディープニューラルネットワークの堅牢性をテストする上で重要なツールである。
我々は ImageNet-O 上で OOD 検出手法の比較解析を行うことを目標としている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Out of distribution (OOD) detection is a crucial part of making machine
learning systems robust. The ImageNet-O dataset is an important tool in testing
the robustness of ImageNet trained deep neural networks that are widely used
across a variety of systems and applications. We aim to perform a comparative
analysis of OOD detection methods on ImageNet-O, a first of its kind dataset
with a label distribution different than that of ImageNet, that has been
created to aid research in OOD detection for ImageNet models. As this dataset
is fairly new, we aim to provide a comprehensive benchmarking of some of the
current state of the art OOD detection methods on this novel dataset. This
benchmarking covers a variety of model architectures, settings where we haves
prior access to the OOD data versus when we don't, predictive score based
approaches, deep generative approaches to OOD detection, and more.
- Abstract(参考訳): Out of Distribution(OOD)検出は、マシンラーニングシステムを堅牢化するための重要な部分である。
imagenet-oデータセットは、さまざまなシステムやアプリケーションで広く使われているimagenetトレーニングされたディープニューラルネットワークの堅牢性をテストする上で重要なツールである。
我々は、ImageNetモデルにおけるOOD検出の研究を支援するために作成された、ImageNetとは異なるラベル分布を持つ最初のタイプのデータセットであるImageNet-Oで、OOD検出方法の比較分析を行うことを目指している。
このデータセットはかなり新しいので、この新しいデータセットにおけるart ood検出方法の現在の状況に関する包括的なベンチマークを提供することを目指している。
このベンチマークは、さまざまなモデルアーキテクチャ、OODデータに事前アクセス可能な設定、予測スコアベースのアプローチ、OOD検出に対する深い生成アプローチなどをカバーする。
関連論文リスト
- Can OOD Object Detectors Learn from Foundation Models? [56.03404530594071]
アウト・オブ・ディストリビューション(OOD)オブジェクト検出は、オープンセットのOODデータがないため、難しい課題である。
テキストから画像への生成モデルの最近の進歩に触発されて,大規模オープンセットデータを用いて訓練された生成モデルがOODサンプルを合成する可能性について検討した。
SyncOODは,大規模基盤モデルの能力を活用するシンプルなデータキュレーション手法である。
論文 参考訳(メタデータ) (2024-09-08T17:28:22Z) - TagOOD: A Novel Approach to Out-of-Distribution Detection via Vision-Language Representations and Class Center Learning [26.446233594630087]
視覚言語表現を用いたOOD検出のための新しいアプローチである textbfTagOOD を提案する。
TagOODは、抽出されたオブジェクトの特徴に基づいて軽量なネットワークをトレーニングし、代表的なクラスセンターを学習する。
これらの中心は、OOD検出における無関係な画像特徴の影響を最小限に抑え、INDオブジェクトクラスの中心的な傾向を捉えている。
論文 参考訳(メタデータ) (2024-08-28T06:37:59Z) - Msmsfnet: a multi-stream and multi-scale fusion net for edge detection [6.1932429715357165]
エッジ検出は、コンピュータビジョンにおける長年の問題である。
最近のディープラーニングベースのアルゴリズムは、公開データセットで最先端のパフォーマンスを実現する。
しかし、それらのパフォーマンスは、ImageNetデータセット上のバックボーンネットワークのトレーニング済みの重みに大きく依存している。
論文 参考訳(メタデータ) (2024-04-07T08:03:42Z) - ImageNet-D: Benchmarking Neural Network Robustness on Diffusion Synthetic Object [78.58860252442045]
我々は、深層モデルの堅牢性をベンチマークするハードイメージのためのデータソースとして、生成モデルを紹介した。
このベンチマークを ImageNet-D と呼ぶ以前の作業よりも、背景、テクスチャ、材料が多様化したイメージを生成することができます。
我々の研究は、拡散モデルが視覚モデルをテストするのに効果的な情報源となることを示唆している。
論文 参考訳(メタデータ) (2024-03-27T17:23:39Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
本稿では,LSKNetのバックボーンをDiffusionDetヘッドに統合したオブジェクト検出モデルの詳細な評価を行う。
提案手法は平均精度(MAP)を約45.7%向上させる。
この進歩は、提案された修正の有効性を強調し、航空画像解析の新しいベンチマークを設定する。
論文 参考訳(メタデータ) (2023-11-21T19:49:13Z) - Building One-class Detector for Anything: Open-vocabulary Zero-shot OOD
Detection Using Text-image Models [23.302018871162186]
ゼロショット方式でテキスト画像事前学習モデルを利用する新しい1クラスオープンセットOOD検出器を提案する。
提案手法は,ドメイン内でないものを検出し,多様なOODを検出する柔軟性を提供する。
本手法は,すべてのベンチマークにおいて,従来の手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2023-05-26T18:58:56Z) - A Simple Test-Time Method for Out-of-Distribution Detection [45.11199798139358]
本稿では,OOD検出のための簡易なテスト時間線形訓練法を提案する。
分布外である入力画像の確率は、ニューラルネットワークが抽出した特徴と驚くほど線形に相関していることがわかった。
本稿では,提案手法のオンライン版を提案し,実世界のアプリケーションでより実用的な性能を実現する。
論文 参考訳(メタデータ) (2022-07-17T16:02:58Z) - Igeood: An Information Geometry Approach to Out-of-Distribution
Detection [35.04325145919005]
Igeoodは, オフ・オブ・ディストリビューション(OOD)サンプルを効果的に検出する手法である。
Igeoodは任意のトレーニング済みニューラルネットワークに適用され、機械学習モデルにさまざまなアクセス権を持つ。
Igeoodは、さまざまなネットワークアーキテクチャやデータセットにおいて、競合する最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-03-15T11:26:35Z) - Triggering Failures: Out-Of-Distribution detection by learning from
local adversarial attacks in Semantic Segmentation [76.2621758731288]
セグメンテーションにおけるアウト・オブ・ディストリビューション(OOD)オブジェクトの検出に取り組む。
私たちの主な貢献は、ObsNetと呼ばれる新しいOOD検出アーキテクチャであり、ローカル・アタック(LAA)に基づく専用トレーニングスキームと関連付けられています。
3つの異なるデータセットの文献の最近の10つの手法と比較して,速度と精度の両面で最高の性能が得られることを示す。
論文 参考訳(メタデータ) (2021-08-03T17:09:56Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。