論文の概要: Multiple Similarity Drug-Target Interaction Prediction with Random Walks
and Matrix Factorization
- arxiv url: http://arxiv.org/abs/2201.09508v1
- Date: Mon, 24 Jan 2022 08:02:05 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-25 17:08:15.067450
- Title: Multiple Similarity Drug-Target Interaction Prediction with Random Walks
and Matrix Factorization
- Title(参考訳): ランダムウォークによる薬物・標的相互作用予測と行列因子化
- Authors: Bin Liu, Dimitrios Papadopoulos, Fragkiskos D. Malliaros, Grigorios
Tsoumakas, Apostolos N. Papadopoulos
- Abstract要約: 我々は、異なるレイヤが薬物と標的の異なる類似度メトリクスに対応する、多層ネットワークの視点を捉えている。
複数のビューでキャプチャされたトポロジ情報を完全に活用するために,DTI予測のための最適化フレームワーク MDMF を開発した。
このフレームワークは、すべての超分子層にまたがる高次近接を維持するだけでなく、内部積との相互作用を近似する薬物や標的のベクトル表現を学習する。
- 参考スコア(独自算出の注目度): 16.41618129467975
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The discovery of drug-target interactions (DTIs) is a very promising area of
research with great potential. In general, the identification of reliable
interactions among drugs and proteins can boost the development of effective
pharmaceuticals. In this work, we leverage random walks and matrix
factorization techniques towards DTI prediction. In particular, we take a
multi-layered network perspective, where different layers correspond to
different similarity metrics between drugs and targets. To fully take advantage
of topology information captured in multiple views, we develop an optimization
framework, called MDMF, for DTI prediction. The framework learns vector
representations of drugs and targets that not only retain higher-order
proximity across all hyper-layers and layer-specific local invariance, but also
approximates the interactions with their inner product. Furthermore, we propose
an ensemble method, called MDMF2A, which integrates two instantiations of the
MDMF model that optimize surrogate losses of the area under the
precision-recall curve (AUPR) and the area under the receiver operating
characteristic curve (AUC), respectively. The empirical study on real-world DTI
datasets shows that our method achieves significant improvement over current
state-of-the-art approaches in four different settings. Moreover, the
validation of highly ranked non-interacting pairs also demonstrates the
potential of MDMF2A to discover novel DTIs.
- Abstract(参考訳): 薬物標的相互作用(DTI)の発見は、非常に有望な研究分野であり、大きな可能性を秘めている。
一般に、医薬品とタンパク質間の信頼できる相互作用の同定は、有効な医薬品の開発を促進する。
本研究では,DTI予測にランダムウォークと行列因数分解手法を利用する。
特に、異なるレイヤが薬物と標的の異なる類似度メトリクスに対応している、多層ネットワークの観点を考察する。
複数のビューでキャプチャされたトポロジ情報を完全に活用するために,DTI予測のための最適化フレームワーク MDMF を開発した。
このフレームワークは薬物や標的のベクトル表現を学習し、全ての超層および層特異的局所不変性において高次近接を保持するだけでなく、内積との相互作用を近似する。
さらに, 高精度リコール曲線(AUPR)における領域のサロゲート損失を最適化するMDMFモデルと, 受信動作特性曲線(AUC)における領域の2つのインスタンス化を統合するMDMF2Aというアンサンブル手法を提案する。
実世界のDTIデータセットに関する実証研究により,本手法は4つの異なる設定で現在の最先端アプローチよりも大幅に改善されていることが示された。
さらに、高いランクの非相互作用対の検証は、新しいDTIを発見するMDMF2Aの可能性を示す。
関連論文リスト
- MKDTI: Predicting drug-target interactions via multiple kernel fusion on graph attention network [37.40418564922425]
グラフアテンションネットワークの様々な層埋め込みからカーネル情報を抽出することにより、MKDTIと呼ばれるモデルを定式化する。
我々は、Dual Laplacian Regularized Least Squaresフレームワークを使用して、新規なドラッグターゲットエンティティ接続を予測する。
論文 参考訳(メタデータ) (2024-07-14T02:53:25Z) - A Cross-Field Fusion Strategy for Drug-Target Interaction Prediction [85.2792480737546]
既存の方法は、DTI予測中にグローバルなタンパク質情報を利用することができない。
ローカルおよびグローバルなタンパク質情報を取得するために、クロスフィールド情報融合戦略が採用されている。
SiamDTI予測法は、新規薬物や標的に対する他の最先端(SOTA)法よりも高い精度を達成する。
論文 参考訳(メタデータ) (2024-05-23T13:25:20Z) - Source-Free Collaborative Domain Adaptation via Multi-Perspective
Feature Enrichment for Functional MRI Analysis [55.03872260158717]
安静時MRI機能(rs-fMRI)は、神経疾患の分析を助けるために多地点で研究されている。
ソース領域とターゲット領域の間のfMRIの不均一性を低減するための多くの手法が提案されている。
しかし、マルチサイト研究における懸念やデータストレージの負担のため、ソースデータの取得は困難である。
我々は、fMRI解析のためのソースフリー協調ドメイン適応フレームワークを設計し、事前訓練されたソースモデルとラベルなしターゲットデータのみにアクセスできるようにする。
論文 参考訳(メタデータ) (2023-08-24T01:30:18Z) - Meta-Path-based Probabilistic Soft Logic for Drug-Target Interaction
Prediction [36.08294497336554]
薬物-標的相互作用(DTI)予測は、薬物が標的に束縛されるかどうかを予測することを目的としている。
最近提案された手法のほとんどは、DTI予測に単一のドラッグ・ドラッグ類似性およびターゲット・ターゲット類似性情報を使用する。
本稿では,ネットワークに基づく薬物と薬物の相互作用予測手法を提案する。
論文 参考訳(メタデータ) (2023-06-25T02:30:38Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
GradABM(GradABM)は、エージェントベースのモデリングのためのスケーラブルで微分可能な設計で、勾配に基づく学習と自動微分が可能である。
GradABMは、コモディティハードウェア上で数秒で数百万の人口をシミュレートし、ディープニューラルネットワークと統合し、異種データソースを取り込みます。
論文 参考訳(メタデータ) (2022-07-20T07:32:02Z) - SSM-DTA: Breaking the Barriers of Data Scarcity in Drug-Target Affinity
Prediction [127.43571146741984]
薬物標的親和性(DTA)は、早期の薬物発見において極めて重要である。
湿式実験は依然として最も信頼性の高い方法であるが、時間と資源が集中している。
既存の手法は主に、データ不足の問題に適切に対処することなく、利用可能なDTAデータに基づく技術開発に重点を置いている。
SSM-DTAフレームワークについて述べる。
論文 参考訳(メタデータ) (2022-06-20T14:53:25Z) - Multi-View Substructure Learning for Drug-Drug Interaction Prediction [69.34322811160912]
DDI予測のための新しいマルチビュードラッグサブ構造ネットワーク(MSN-DDI)を提案する。
MSN-DDIは、単一の薬物(イントラビュー)と薬物ペア(インタービュー)の両方の表現から化学的サブ構造を同時に学習し、そのサブ構造を利用して、薬物表現を反復的に更新する。
総合的な評価では、MSN-DDIは、トランスダクティブ・セッティングの下で比較的改善された19.32%と99%以上の精度を達成することで、既存の薬物に対するDDI予測をほぼ解決したことを示している。
論文 参考訳(メタデータ) (2022-03-28T05:44:29Z) - Toward Robust Drug-Target Interaction Prediction via Ensemble Modeling
and Transfer Learning [0.0]
本稿では,DTI予測のための深層学習モデル(EnsembleDLM)のアンサンブルを紹介する。
EnsembleDLMは、化学物質やタンパク質の配列情報のみを使用し、複数のディープニューラルネットワークからの予測を集約する。
DavisとKIBAのデータセットで最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2021-07-02T04:00:03Z) - Optimizing Area Under the Curve Measures via Matrix Factorization for
Drug-Target Interaction Prediction [7.385579678137434]
本稿では,高精度リコール曲線(AUPR)と受信動作特性曲線(AUC)の領域を最適化する2つの行列分解法を提案する。
4つの最新のベンチマークデータセットに対する実験結果は、最適化された評価基準の点から提案手法の優位性を示している。
論文 参考訳(メタデータ) (2021-05-01T14:48:32Z) - Drug-Target Interaction Prediction via an Ensemble of Weighted Nearest
Neighbors with Interaction Recovery [5.8683934849211745]
薬物とターゲットの相互作用は、構造ベースの薬物類似性および配列ベースの標的タンパク質類似性によって予測される。
既存の類似性に基づくほとんどの方法は、トランスダクティブな設定に従う。
現在のDTIデータセットにおける大量の欠落した相互作用は、ほとんどのDTI予測方法を妨げる。
WkNNIR (Weighted k Nearest Neighbor with Interaction Recovery) と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2020-12-22T19:54:18Z) - Ensemble Transfer Learning for the Prediction of Anti-Cancer Drug
Response [49.86828302591469]
本稿では,抗がん剤感受性の予測にトランスファーラーニングを適用した。
我々は、ソースデータセット上で予測モデルをトレーニングし、ターゲットデータセット上でそれを洗練する古典的な転送学習フレームワークを適用した。
アンサンブル転送学習パイプラインは、LightGBMと異なるアーキテクチャを持つ2つのディープニューラルネットワーク(DNN)モデルを使用して実装されている。
論文 参考訳(メタデータ) (2020-05-13T20:29:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。