論文の概要: Optimizing Area Under the Curve Measures via Matrix Factorization for
Drug-Target Interaction Prediction
- arxiv url: http://arxiv.org/abs/2105.01545v1
- Date: Sat, 1 May 2021 14:48:32 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-05 12:44:29.810490
- Title: Optimizing Area Under the Curve Measures via Matrix Factorization for
Drug-Target Interaction Prediction
- Title(参考訳): 薬物・標的相互作用予測のためのマトリックス因子化による曲がり領域の最適化
- Authors: Bin Liu and Grigorios Tsoumakas
- Abstract要約: 本稿では,高精度リコール曲線(AUPR)と受信動作特性曲線(AUC)の領域を最適化する2つの行列分解法を提案する。
4つの最新のベンチマークデータセットに対する実験結果は、最適化された評価基準の点から提案手法の優位性を示している。
- 参考スコア(独自算出の注目度): 7.385579678137434
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In drug discovery, identifying drug-target interactions (DTIs) via
experimental approaches is a tedious and expensive procedure. Computational
methods efficiently predict DTIs and recommend a small part of potential
interacting pairs for further experimental confirmation, accelerating the drug
discovery process. Area under the precision-recall curve (AUPR) that emphasizes
the accuracy of top-ranked pairs and area under the receiver operating
characteristic curve (AUC) that heavily punishes the existence of low ranked
interacting pairs are two widely used evaluation metrics in the DTI prediction
task. However, the two metrics are seldom considered as losses within existing
DTI prediction methods. This paper proposes two matrix factorization methods
that optimize AUPR and AUC, respectively. The two methods utilize graph
regularization to ensure the local invariance of training drugs and targets in
the latent feature space, and leverage the optimal decay coefficient to infer
more reliable latent features of new drugs and targets. Experimental results
over four updated benchmark datasets containing more recently verified
interactions show the superiority of the proposed methods in terms of the
corresponding evaluation metric they optimize.
- Abstract(参考訳): 薬物発見において、実験的アプローチによる薬物標的相互作用(DTI)の同定は退屈で高価な手順である。
計算手法は、DTIを効率的に予測し、さらに実験的な確認のために、潜在的な相互作用するペアのごく一部を推奨する。
DTI予測タスクにおいて、上位2組の精度を強調する高精度リコール曲線(AUPR)の下の領域と、下位2組の相互作用するペアの存在を厳しく罰する受信操作特性曲線(AUC)の下の領域は、広く使われている2つの評価指標である。
しかし、この2つの指標は、既存のDTI予測手法における損失とはみなされない。
本稿では, aupr と auc をそれぞれ最適化する行列分解法を提案する。
2つの方法は、グラフ正規化を利用して、潜在特徴空間におけるトレーニング薬物と標的の局所的不分散を確実にし、最適な減衰係数を利用して、新しい薬物と標的のより信頼性の高い潜在特徴を推測する。
より最近検証されたインタラクションを含む4つのベンチマークデータセットに対する実験結果は、最適化された評価基準の点から提案手法の優位性を示している。
関連論文リスト
- Enhancing Angular Resolution via Directionality Encoding and Geometric Constraints in Brain Diffusion Tensor Imaging [70.66500060987312]
拡散強調画像(DWI)は、水分子の拡散率に感応した磁気共鳴イメージング(MRI)の一種である。
本研究はDirGeo-DTIを提案する。DirGeo-DTIは、勾配方向の最小理論数(6)で得られたDWIの集合からでも、信頼できるDTIメトリクスを推定する深層学習に基づく手法である。
論文 参考訳(メタデータ) (2024-09-11T11:12:26Z) - A Cross-Field Fusion Strategy for Drug-Target Interaction Prediction [85.2792480737546]
既存の方法は、DTI予測中にグローバルなタンパク質情報を利用することができない。
ローカルおよびグローバルなタンパク質情報を取得するために、クロスフィールド情報融合戦略が採用されている。
SiamDTI予測法は、新規薬物や標的に対する他の最先端(SOTA)法よりも高い精度を達成する。
論文 参考訳(メタデータ) (2024-05-23T13:25:20Z) - ResDTA: Predicting Drug-Target Binding Affinity Using Residual Skip
Connections [0.0]
本稿では,DT結合親和性を予測するための深層学習手法を提案する。
提案したモデルでは,最大のベンチマークデータセットの1つにおいて,最高のコンコーダンス指標(CI)性能を達成している。
論文 参考訳(メタデータ) (2023-03-20T20:27:11Z) - Data-Driven Influence Functions for Optimization-Based Causal Inference [105.5385525290466]
統計的汎関数に対するガトー微分を有限差分法で近似する構成的アルゴリズムについて検討する。
本研究では,確率分布を事前知識がないが,データから推定する必要がある場合について検討する。
論文 参考訳(メタデータ) (2022-08-29T16:16:22Z) - SSM-DTA: Breaking the Barriers of Data Scarcity in Drug-Target Affinity
Prediction [127.43571146741984]
薬物標的親和性(DTA)は、早期の薬物発見において極めて重要である。
湿式実験は依然として最も信頼性の高い方法であるが、時間と資源が集中している。
既存の手法は主に、データ不足の問題に適切に対処することなく、利用可能なDTAデータに基づく技術開発に重点を置いている。
SSM-DTAフレームワークについて述べる。
論文 参考訳(メタデータ) (2022-06-20T14:53:25Z) - Multiple Similarity Drug-Target Interaction Prediction with Random Walks
and Matrix Factorization [16.41618129467975]
我々は、異なるレイヤが薬物と標的の異なる類似度メトリクスに対応する、多層ネットワークの視点を捉えている。
複数のビューでキャプチャされたトポロジ情報を完全に活用するために,DTI予測のための最適化フレームワーク MDMF を開発した。
このフレームワークは、すべての超分子層にまたがる高次近接を維持するだけでなく、内部積との相互作用を近似する薬物や標的のベクトル表現を学習する。
論文 参考訳(メタデータ) (2022-01-24T08:02:05Z) - Real-time landmark detection for precise endoscopic submucosal
dissection via shape-aware relation network [51.44506007844284]
内視鏡下粘膜下郭清術における高精度かつリアルタイムなランドマーク検出のための形状認識型関係ネットワークを提案する。
まず,ランドマーク間の空間的関係に関する先行知識を直感的に表現する関係キーポイント・ヒートマップを自動生成するアルゴリズムを考案する。
次に、事前知識を学習プロセスに段階的に組み込むために、2つの補完的な正規化手法を開発する。
論文 参考訳(メタデータ) (2021-11-08T07:57:30Z) - Meta Learning Low Rank Covariance Factors for Energy-Based Deterministic
Uncertainty [58.144520501201995]
ニューラルネットワーク層のBi-Lipschitz正規化は、各レイヤの特徴空間におけるデータインスタンス間の相対距離を保存する。
注意セットエンコーダを用いて,タスク固有の共分散行列を効率的に構築するために,対角的,対角的,低ランクな要素のメタ学習を提案する。
また,最終的な予測分布を達成するために,スケールしたエネルギーを利用する推論手法を提案する。
論文 参考訳(メタデータ) (2021-10-12T22:04:19Z) - Toward Robust Drug-Target Interaction Prediction via Ensemble Modeling
and Transfer Learning [0.0]
本稿では,DTI予測のための深層学習モデル(EnsembleDLM)のアンサンブルを紹介する。
EnsembleDLMは、化学物質やタンパク質の配列情報のみを使用し、複数のディープニューラルネットワークからの予測を集約する。
DavisとKIBAのデータセットで最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2021-07-02T04:00:03Z) - Drug-Target Interaction Prediction via an Ensemble of Weighted Nearest
Neighbors with Interaction Recovery [5.8683934849211745]
薬物とターゲットの相互作用は、構造ベースの薬物類似性および配列ベースの標的タンパク質類似性によって予測される。
既存の類似性に基づくほとんどの方法は、トランスダクティブな設定に従う。
現在のDTIデータセットにおける大量の欠落した相互作用は、ほとんどのDTI予測方法を妨げる。
WkNNIR (Weighted k Nearest Neighbor with Interaction Recovery) と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2020-12-22T19:54:18Z) - DTI-SNNFRA: Drug-Target interaction prediction by shared nearest
neighbors and fuzzy-rough approximation [0.0]
DTI-SNNFRA(DTI-SNNFRA)を提案する。
ROC-AUCの予測スコアは0.95と非常に良好である。
論文 参考訳(メタデータ) (2020-09-22T19:10:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。