Three little paradoxes: making sense of semiclassical gravity
- URL: http://arxiv.org/abs/2201.10452v1
- Date: Tue, 25 Jan 2022 16:54:49 GMT
- Title: Three little paradoxes: making sense of semiclassical gravity
- Authors: Andr\'e Gro{\ss}ardt
- Abstract summary: I show that an experiment by Page and Geilker does not exclude such a semiclassical theory.
I present a classification of semiclassical models defined by the way in which the wave function collapse is introduced.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: I review the arguments most often raised against a fundamental coupling of
classical spacetime to quantum matter. I show that an experiment by Page and
Geilker does not exclude such a semiclassical theory but mandates an inclusion
of an objective mechanism for wave function collapse. In this regard, I present
a classification of semiclassical models defined by the way in which the wave
function collapse is introduced. Two related types of paradoxes that have been
discussed in the context of the necessity to quantize the gravitational field
can be shown to not constrain the possibility of a semiclassical coupling. A
third paradox, the possibility to signal faster than light via semiclassical
gravity, is demonstrably avoided if certain conditions are met by the
associated wave function collapse mechanism. In conclusion, all currently
discussed models of semiclassical gravity can be made consistent with
observation. Their internal theoretical consistency remains an open question.
Related papers
- Quantum Non-classicality from Causal Data Fusion [0.8437187555622164]
Bell's theorem shows that quantum correlations are incompatible with a classical theory of cause and effect.
We investigate the problem of causal data fusion that aims to piece together data tables collected under heterogeneous conditions.
We demonstrate the existence of quantum non-classicality resulting from data fusion, even in scenarios where achieving standard Bell non-classicality is impossible.
arXiv Detail & Related papers (2024-05-29T16:35:59Z) - Any consistent coupling between classical gravity and quantum matter is
fundamentally irreversible [0.0]
We argue that when gravity is classical at least one of the following assumptions needs to be violated.
We argue that theories of classical gravity and quantum matter must be fundamentally irreversible.
arXiv Detail & Related papers (2023-01-24T19:00:03Z) - Strongly incoherent gravity [0.0]
A non-entangling version of an arbitrary two-body potential $V(r)$ arises from local measurements and feedback forces.
This produces a non-relativistic model of gravity with fundamental loss of unitarity.
As an alternative to testing entanglement properties, we show that the entire remaining parameter space can be tested by looking for loss of quantum coherence in small systems.
arXiv Detail & Related papers (2023-01-20T01:09:12Z) - Entanglement and thermokinetic uncertainty relations in coherent
mesoscopic transport [0.0]
Coherence leads to entanglement and even nonlocality in quantum systems.
Coherence may lead to a suppression of fluctuations, causing violations of thermo-kinetic uncertainty relations.
Our results provide guiding principles for the design of out-of-equilibrium devices that exhibit nonclassical behavior.
arXiv Detail & Related papers (2022-12-07T18:26:00Z) - Correspondence Between the Energy Equipartition Theorem in Classical
Mechanics and its Phase-Space Formulation in Quantum Mechanics [62.997667081978825]
In quantum mechanics, the energy per degree of freedom is not equally distributed.
We show that in the high-temperature regime, the classical result is recovered.
arXiv Detail & Related papers (2022-05-24T20:51:03Z) - Entanglement dynamics of spins using a few complex trajectories [77.34726150561087]
We consider two spins initially prepared in a product of coherent states and study their entanglement dynamics.
We adopt an approach that allowed the derivation of a semiclassical formula for the linear entropy of the reduced density operator.
arXiv Detail & Related papers (2021-08-13T01:44:24Z) - Observers of quantum systems cannot agree to disagree [55.41644538483948]
We ask whether agreement between observers can serve as a physical principle that must hold for any theory of the world.
We construct examples of (postquantum) no-signaling boxes where observers can agree to disagree.
arXiv Detail & Related papers (2021-02-17T19:00:04Z) - Emergence of classical behavior in the early universe [68.8204255655161]
Three notions are often assumed to be essentially equivalent, representing different facets of the same phenomenon.
We analyze them in general Friedmann-Lemaitre- Robertson-Walker space-times through the lens of geometric structures on the classical phase space.
The analysis shows that: (i) inflation does not play an essential role; classical behavior can emerge much more generally; (ii) the three notions are conceptually distinct; classicality can emerge in one sense but not in another.
arXiv Detail & Related papers (2020-04-22T16:38:25Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z) - Bell's theorem for trajectories [62.997667081978825]
A trajectory is not an outcome of a quantum measurement, in the sense that there is no observable associated with it.
We show how to overcome this problem by considering a special case of our generic inequality that can be experimentally tested point-by-point in time.
arXiv Detail & Related papers (2020-01-03T01:40:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.