Combining Experimental and Observational Data for Identification of
Long-Term Causal Effects
- URL: http://arxiv.org/abs/2201.10743v1
- Date: Wed, 26 Jan 2022 04:21:14 GMT
- Title: Combining Experimental and Observational Data for Identification of
Long-Term Causal Effects
- Authors: AmirEmad Ghassami, Ilya Shpitser, Eric Tchetgen Tchetgen
- Abstract summary: We consider the task of estimating the causal effect of a treatment variable on a long-term outcome variable using data from an observational domain and an experimental domain.
The observational data is assumed to be confounded and hence without further assumptions, this dataset alone cannot be used for causal inference either.
- Score: 13.32091725929965
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider the task of estimating the causal effect of a treatment variable
on a long-term outcome variable using data from an observational domain and an
experimental domain. The observational data is assumed to be confounded and
hence without further assumptions, this dataset alone cannot be used for causal
inference. Also, only a short-term version of the primary outcome variable of
interest is observed in the experimental data, and hence, this dataset alone
cannot be used for causal inference either. In a recent work, Athey et al.
(2020) proposed a method for systematically combining such data for identifying
the downstream causal effect in view. Their approach is based on the
assumptions of internal and external validity of the experimental data, and an
extra novel assumption called latent unconfoundedness. In this paper, we first
review their proposed approach and discuss the latent unconfoundedness
assumption. Then we propose two alternative approaches for data fusion for the
purpose of estimating average treatment effect as well as the effect of
treatment on the treated. Our first proposed approach is based on assuming
equi-confounding bias for the short-term and long-term outcomes. Our second
proposed approach is based on the proximal causal inference framework, in which
we assume the existence of an extra variable in the system which is a proxy of
the latent confounder of the treatment-outcome relation.
Related papers
- Targeted Machine Learning for Average Causal Effect Estimation Using the
Front-Door Functional [3.0232957374216953]
evaluating the average causal effect (ACE) of a treatment on an outcome often involves overcoming the challenges posed by confounding factors in observational studies.
Here, we introduce novel estimation strategies for the front-door criterion based on the targeted minimum loss-based estimation theory.
We demonstrate the applicability of these estimators to analyze the effect of early stage academic performance on future yearly income.
arXiv Detail & Related papers (2023-12-15T22:04:53Z) - Approximating Counterfactual Bounds while Fusing Observational, Biased
and Randomised Data Sources [64.96984404868411]
We address the problem of integrating data from multiple, possibly biased, observational and interventional studies.
We show that the likelihood of the available data has no local maxima.
We then show how the same approach can address the general case of multiple datasets.
arXiv Detail & Related papers (2023-07-31T11:28:24Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
We study causal representation learning, the task of inferring latent causal variables and their causal relations from mixtures of the variables.
Our goal is to identify both the ground truth latents and their causal graph up to a set of ambiguities which we show to be irresolvable from interventional data.
arXiv Detail & Related papers (2023-06-01T10:51:58Z) - Neighborhood Adaptive Estimators for Causal Inference under Network
Interference [152.4519491244279]
We consider the violation of the classical no-interference assumption, meaning that the treatment of one individuals might affect the outcomes of another.
To make interference tractable, we consider a known network that describes how interference may travel.
We study estimators for the average direct treatment effect on the treated in such a setting.
arXiv Detail & Related papers (2022-12-07T14:53:47Z) - Bayesian Counterfactual Mean Embeddings and Off-Policy Evaluation [10.75801980090826]
We present three novel Bayesian methods to estimate the expectation of the ultimate treatment effect.
These methods differ on the source of uncertainty considered and allow for combining two sources of data.
We generalize these ideas to the off-policy evaluation framework.
arXiv Detail & Related papers (2022-11-02T23:39:36Z) - Generalization bounds and algorithms for estimating conditional average
treatment effect of dosage [13.867315751451494]
We investigate the task of estimating the conditional average causal effect of treatment-dosage pairs from a combination of observational data and assumptions on the causal relationships in the underlying system.
This has been a longstanding challenge for fields of study such as epidemiology or economics that require a treatment-dosage pair to make decisions.
We show empirically new state-of-the-art performance results across several benchmark datasets for this problem.
arXiv Detail & Related papers (2022-05-29T15:26:59Z) - SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event
Data [83.50281440043241]
We study the problem of inferring heterogeneous treatment effects from time-to-event data.
We propose a novel deep learning method for treatment-specific hazard estimation based on balancing representations.
arXiv Detail & Related papers (2021-10-26T20:13:17Z) - What can the millions of random treatments in nonexperimental data
reveal about causes? [0.0]
The article introduces one such model and a Bayesian approach to combine the $O(n2)$ pairwise observations typically available in nonexperimnetal data.
We demonstrate that the proposed approach recovers causal effects in common NSW samples, as well as in arbitrary subpopulations and an order-of-magnitude larger supersample.
arXiv Detail & Related papers (2021-05-03T20:13:34Z) - Efficient Causal Inference from Combined Observational and
Interventional Data through Causal Reductions [68.6505592770171]
Unobserved confounding is one of the main challenges when estimating causal effects.
We propose a novel causal reduction method that replaces an arbitrary number of possibly high-dimensional latent confounders.
We propose a learning algorithm to estimate the parameterized reduced model jointly from observational and interventional data.
arXiv Detail & Related papers (2021-03-08T14:29:07Z) - Split-Treatment Analysis to Rank Heterogeneous Causal Effects for
Prospective Interventions [15.443178111068418]
We propose a split-treatment analysis that ranks the individuals most likely to be positively affected by a prospective intervention.
We show that the ranking of heterogeneous causal effect based on the proxy treatment is the same as the ranking based on the target treatment's effect.
arXiv Detail & Related papers (2020-11-11T16:17:29Z) - Enabling Counterfactual Survival Analysis with Balanced Representations [64.17342727357618]
Survival data are frequently encountered across diverse medical applications, i.e., drug development, risk profiling, and clinical trials.
We propose a theoretically grounded unified framework for counterfactual inference applicable to survival outcomes.
arXiv Detail & Related papers (2020-06-14T01:15:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.