論文の概要: Speed, Quality, and the Optimal Timing of Complex Decisions: Field
Evidence
- arxiv url: http://arxiv.org/abs/2201.10808v1
- Date: Wed, 26 Jan 2022 08:29:05 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-27 19:24:35.755053
- Title: Speed, Quality, and the Optimal Timing of Complex Decisions: Field
Evidence
- Title(参考訳): 複雑な決定の速度, 品質, 最適タイミング: フィールド・エビデンス
- Authors: Uwe Sunde, Dainis Zegners, Anthony Strittmatter
- Abstract要約: ムーブ・バイ・ムーブデータは、決定時間と意思決定品質に関する極めて詳細な情報を提供する。
結果は、より高速な決定がより良いパフォーマンスに結びついていることを明らかにします。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents an empirical investigation of the relation between
decision speed and decision quality for a real-world setting of
cognitively-demanding decisions in which the timing of decisions is endogenous:
professional chess. Move-by-move data provide exceptionally detailed and
precise information about decision times and decision quality, based on a
comparison of actual decisions to a computational benchmark of best moves
constructed using the artificial intelligence of a chess engine. The results
reveal that faster decisions are associated with better performance. The
findings are consistent with the predictions of procedural decision models like
drift-diffusion-models in which decision makers sequentially acquire
information about decision alternatives with uncertain valuations.
- Abstract(参考訳): 本稿では,意思決定のタイミングが内在的である認知要求決定の現実的な設定における意思決定速度と意思決定品質の関係を実証的に検討する。
move-by-moveデータは、チェスエンジンの人工知能を用いて構築された最良動作の計算ベンチマークと実際の決定の比較に基づいて、決定時間と決定品質に関する極めて詳細な情報を提供する。
その結果、より速い決定はより良いパフォーマンスに結びついていることが判明した。
この結果はドリフト拡散モデルのような手続き決定モデルの予測と一致しており、意思決定者は不確定な評価を伴う決定代替案に関する情報を順次取得する。
関連論文リスト
- Decision Theoretic Foundations for Experiments Evaluating Human Decisions [18.27590643693167]
我々は、人間のパフォーマンスの損失をバイアスの形で評価するためには、合理的なエージェントが実用性を最大化する決定を識別する必要があるという情報を参加者に提供する必要があると論じる。
実演として,AIによる意思決定に関する文献からの意思決定の評価が,これらの基準をどの程度達成したかを評価する。
論文 参考訳(メタデータ) (2024-01-25T16:21:37Z) - Rational Decision-Making Agent with Internalized Utility Judgment [91.80700126895927]
大規模言語モデル(LLM)は目覚ましい進歩を示し、従来のNLPアプリケーションを超えて複雑な多段階決定タスクを実行できるエージェントにLLMを開発するための重要な努力を惹きつけている。
本稿では,RadAgentを提案する。このRadAgentは,経験探索とユーティリティ学習を含む反復的なフレームワークを通じて,合理性の発展を促進する。
ToolBenchデータセットの実験結果は、RadAgentがベースラインよりも優れていることを示している。
論文 参考訳(メタデータ) (2023-08-24T03:11:45Z) - Measuring Classification Decision Certainty and Doubt [61.13511467941388]
複数分類決定機械学習問題における予測の品質と不確実性を評価し,比較するため,直感的なスコアを提案する。
論文 参考訳(メタデータ) (2023-03-25T21:31:41Z) - On solving decision and risk management problems subject to uncertainty [91.3755431537592]
不確実性は意思決定とリスク管理において広範囲にわたる課題である。
本稿では,このような戦略を体系的に理解し,その適用範囲を判断し,それらをうまく活用するための枠組みを開発する。
論文 参考訳(メタデータ) (2023-01-18T19:16:23Z) - Explainability's Gain is Optimality's Loss? -- How Explanations Bias
Decision-making [0.0]
説明は、アルゴリズムと人間の意思決定者とのコミュニケーションを促進するのに役立つ。
因果モデルに関する特徴に基づく説明のセマンティクスは、意思決定者の以前の信念から漏れを引き起こす。
このような違いは、準最適かつ偏った決定結果をもたらす可能性がある。
論文 参考訳(メタデータ) (2022-06-17T11:43:42Z) - Inverse Online Learning: Understanding Non-Stationary and Reactionary
Policies [79.60322329952453]
エージェントが意思決定を行う方法の解釈可能な表現を開発する方法を示す。
一連の軌跡に基づく意思決定プロセスを理解することにより,このオンライン学習問題に対して,政策推論問題を逆問題とみなした。
本稿では、エージェントがそれらを更新するプロセスと並行して、その影響を遡及的に推定する実用的なアルゴリズムを提案する。
UNOSの臓器提供受諾決定の分析に応用することで、我々のアプローチは意思決定プロセスを管理する要因や時間とともにどのように変化するかに、貴重な洞察をもたらすことができることを実証する。
論文 参考訳(メタデータ) (2022-03-14T17:40:42Z) - A Machine Learning Framework Towards Transparency in Experts' Decision
Quality [0.0]
多くの重要な設定において、専門家の意思決定の質の透明性は、専門家の判断を評価するための根拠となる真理のデータがコストが高く、限られた一連の決定のためにのみ利用できるため、めったに不可能である。
まず、この設定で専門家の判断精度を推定し、それに対応するための機械学習ベースのフレームワークを開発するという問題を定式化する。
本手法は, 労働者の過去の意思決定に関する豊富な歴史的データと, 根拠となる真理情報による意思決定事例の不足を効果的に活用する。
論文 参考訳(メタデータ) (2021-10-21T18:50:40Z) - Targeted Active Learning for Bayesian Decision-Making [15.491942513739676]
サンプルを逐次取得する際には,学習と意思決定を分離することが準最適である。
本稿では,ダウン・ザ・ライン決定問題を考慮に入れた,新たなアクティブな学習戦略を提案する。
具体的には、最適決定の後続分布における期待情報ゲインを最大化する、新しい能動的学習基準を導入する。
論文 参考訳(メタデータ) (2021-06-08T09:05:43Z) - Leveraging Expert Consistency to Improve Algorithmic Decision Support [62.61153549123407]
建設のギャップを狭めるために観測結果と組み合わせることができる情報源として,歴史専門家による意思決定の利用について検討する。
本研究では,データ内の各ケースが1人の専門家によって評価された場合に,専門家の一貫性を間接的に推定する影響関数に基づく手法を提案する。
本研究は, 児童福祉領域における臨床現場でのシミュレーションと実世界データを用いて, 提案手法が構成ギャップを狭めることに成功していることを示す。
論文 参考訳(メタデータ) (2021-01-24T05:40:29Z) - Inverse Active Sensing: Modeling and Understanding Timely
Decision-Making [111.07204912245841]
我々は,内因性,文脈依存型時間圧下でのエビデンスに基づく意思決定の一般的な設定のための枠組みを開発する。
意思決定戦略において、サプライズ、サスペンス、最適性の直感的な概念をモデル化する方法を実証する。
論文 参考訳(メタデータ) (2020-06-25T02:30:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。