Quantum Reservoir Computing for Speckle-Disorder Potentials
- URL: http://arxiv.org/abs/2201.11096v1
- Date: Wed, 26 Jan 2022 18:04:49 GMT
- Title: Quantum Reservoir Computing for Speckle-Disorder Potentials
- Authors: Pere Mujal
- Abstract summary: Quantum reservoir computing is a machine-learning approach designed to exploit the dynamics of quantum systems with memory to process information.
In this work, this technique is introduced with a quantum reservoir of spins and it is applied to find the ground-state energy of an additional quantum system.
The performance of the task is analyzed with a focus on the observable quantities extracted from the reservoir and it shows to be enhanced when two-qubit correlations are employed.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum reservoir computing is a machine-learning approach designed to
exploit the dynamics of quantum systems with memory to process information. As
an advantage, it presents the possibility to benefit from the quantum resources
provided by the reservoir combined with a simple and fast training strategy. In
this work, this technique is introduced with a quantum reservoir of spins and
it is applied to find the ground-state energy of an additional quantum system.
The quantum reservoir computer is trained with a linear model to predict the
lowest energy of a particle in the presence of different speckle-disorder
potentials. The performance of the task is analyzed with a focus on the
observable quantities extracted from the reservoir and it shows to be enhanced
when two-qubit correlations are employed.
Related papers
- Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Configured Quantum Reservoir Computing for Multi-Task Machine Learning [24.698475208639586]
We explore the dynamics of programmable NISQ devices for quantum reservoir computing.
A single configured quantum reservoir can simultaneously learn multiple tasks.
We highlight the unique role of quantum coherence in the quantum reservoir, which underpins its exceptional learning performance.
arXiv Detail & Related papers (2023-03-30T18:00:02Z) - Benchmarking the role of particle statistics in Quantum Reservoir
Computing [0.0]
We study the ability of bosons, fermions, and qubits to store information from past inputs by measuring linear and nonlinear memory capacity.
For the simplest reservoir Hamiltonian choice, fermions provide the best reservoir due to their intrinsic nonlocal properties.
A tailored input injection strategy allows the exploitation of the abundance of degrees of freedom of the Hilbert space for bosonic quantum reservoir computing.
arXiv Detail & Related papers (2023-02-14T16:23:46Z) - Exploring quantum mechanical advantage for reservoir computing [0.0]
We establish a link between quantum properties of a quantum reservoir and its linear short-term memory performance.
We find that a high degree of entanglement in the reservoir is a prerequisite for a more complex reservoir dynamics.
We discuss the effect of dephasing in the performance of physical quantum reservoirs.
arXiv Detail & Related papers (2023-02-07T17:07:28Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Quantum circuits for the preparation of spin eigenfunctions on quantum
computers [63.52264764099532]
Hamiltonian symmetries are an important instrument to classify relevant many-particle wavefunctions.
This work presents quantum circuits for the exact and approximate preparation of total spin eigenfunctions on quantum computers.
arXiv Detail & Related papers (2022-02-19T00:21:46Z) - Physical reservoir computing using finitely-sampled quantum systems [0.0]
Reservoir computing exploits the nonlinear dynamics of a physical reservoir to perform complex time-series processing tasks.
Here we describe a framework for reservoir computing with nonlinear quantum reservoirs under continuous measurement.
arXiv Detail & Related papers (2021-10-26T16:46:14Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum reservoir computing: a reservoir approach toward quantum machine
learning on near-term quantum devices [0.8206877486958002]
Quantum reservoir computing is an approach to use such a complex and rich dynamics on the quantum systems as it is for temporal machine learning.
All these quantum machine learning approaches are experimentally feasible and effective on the state-of-the-art quantum devices.
arXiv Detail & Related papers (2020-11-10T04:45:52Z) - Machine learning transfer efficiencies for noisy quantum walks [62.997667081978825]
We show that the process of finding requirements on both a graph type and a quantum system coherence can be automated.
The automation is done by using a convolutional neural network of a particular type that learns to understand with which network and under which coherence requirements quantum advantage is possible.
Our results are of importance for demonstration of advantage in quantum experiments and pave the way towards automating scientific research and discoveries.
arXiv Detail & Related papers (2020-01-15T18:36:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.