Exploring quantum mechanical advantage for reservoir computing
- URL: http://arxiv.org/abs/2302.03595v2
- Date: Thu, 11 May 2023 12:04:30 GMT
- Title: Exploring quantum mechanical advantage for reservoir computing
- Authors: Niclas G\"otting, Frederik Lohof, Christopher Gies
- Abstract summary: We establish a link between quantum properties of a quantum reservoir and its linear short-term memory performance.
We find that a high degree of entanglement in the reservoir is a prerequisite for a more complex reservoir dynamics.
We discuss the effect of dephasing in the performance of physical quantum reservoirs.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum reservoir computing is an emerging field in machine learning with
quantum systems. While classical reservoir computing has proven to be a capable
concept of enabling machine learning on real, complex dynamical systems with
many degrees of freedom, the advantage of its quantum analogue is yet to be
fully explored. Here, we establish a link between quantum properties of a
quantum reservoir, namely entanglement and its occupied phase space dimension,
and its linear short-term memory performance. We find that a high degree of
entanglement in the reservoir is a prerequisite for a more complex reservoir
dynamics that is key to unlocking the exponential phase space and higher
short-term memory capacity. We quantify these relations and discuss the effect
of dephasing in the performance of physical quantum reservoirs.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Configured Quantum Reservoir Computing for Multi-Task Machine Learning [24.698475208639586]
We explore the dynamics of programmable NISQ devices for quantum reservoir computing.
A single configured quantum reservoir can simultaneously learn multiple tasks.
We highlight the unique role of quantum coherence in the quantum reservoir, which underpins its exceptional learning performance.
arXiv Detail & Related papers (2023-03-30T18:00:02Z) - Quantum Reservoir Computing for Speckle-Disorder Potentials [0.0]
Quantum reservoir computing is a machine-learning approach designed to exploit the dynamics of quantum systems with memory to process information.
In this work, this technique is introduced with a quantum reservoir of spins and it is applied to find the ground-state energy of an additional quantum system.
The performance of the task is analyzed with a focus on the observable quantities extracted from the reservoir and it shows to be enhanced when two-qubit correlations are employed.
arXiv Detail & Related papers (2022-01-26T18:04:49Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - The Reservoir Learning Power across Quantum Many-Boby Localization
Transition [27.693120770022198]
We study the learning power of a one-dimensional long-range randomly-coupled quantum spin chain.
In time sequence learning tasks, we find the system in the quantum many-body localized (MBL) phase holds long-term memory.
We find optimal learning performance near the MBL-to-ergodic transition.
arXiv Detail & Related papers (2021-04-06T18:00:06Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Neuromorphic computing with a single qudit [0.0]
Reservoir computing is an alternative to high-fidelity control of many-body quantum systems.
Here, we consider a reservoir comprised of a single qudit ($d$-dimensional quantum system)
We demonstrate a robust performance advantage compared to an analogous classical system.
arXiv Detail & Related papers (2021-01-27T22:35:22Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum reservoir computing: a reservoir approach toward quantum machine
learning on near-term quantum devices [0.8206877486958002]
Quantum reservoir computing is an approach to use such a complex and rich dynamics on the quantum systems as it is for temporal machine learning.
All these quantum machine learning approaches are experimentally feasible and effective on the state-of-the-art quantum devices.
arXiv Detail & Related papers (2020-11-10T04:45:52Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.