Entangling metropolitan-distance separated quantum memories
- URL: http://arxiv.org/abs/2201.11953v1
- Date: Fri, 28 Jan 2022 06:25:24 GMT
- Title: Entangling metropolitan-distance separated quantum memories
- Authors: Xi-Yu Luo, Yong Yu, Jian-Long Liu, Ming-Yang Zheng, Chao-Yang Wang,
Bin Wang, Jun Li, Xiao Jiang, Xiu-Ping Xie, Qiang Zhang, Xiao-Hui Bao,
Jian-Wei Pan
- Abstract summary: A prototype is a network of quantum memories that are entangled and well separated.
We create atom-photon entanglement in one node and send the photon to a second node for storage.
The final memory-memory entanglement is verified to have a fidelity of 90% via retrieving to photons.
- Score: 22.27673691110657
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum internet gives the promise of getting all quantum resources
connected, and it will enable applications far beyond a localized scenario. A
prototype is a network of quantum memories that are entangled and well
separated. Previous realizations are limited in the distance. In this paper, we
report the establishment of remote entanglement between two atomic quantum
memories physically separated by 12.5 km directly in a metropolitan area. We
create atom-photon entanglement in one node and send the photon to a second
node for storage. We harness low-loss transmission through a field-deployed
fiber of 20.5 km by making use of frequency down-conversion and up-conversion.
The final memory-memory entanglement is verified to have a fidelity of 90% via
retrieving to photons. Our experiment paves the way to study quantum network
applications in a practical scenario.
Related papers
- Hybrid Quantum Repeaters with Ensemble-based Quantum Memories and Single-spin Photon Transducers [13.607316611508045]
We propose to combine two promising hardware platforms in a hybrid quantum repeater architecture.
We describe how a single Rubidium (Rb) atom coupled to nanophotonic resonators can function as a high-rate, telecom-visible entangled photon source.
Our analysis shows that by employing up to 9 repeater stations, each equipped with two Tm-memories capable of holding up to 625 storage modes, along with four single Rb atoms, one can reach a quantum communication rate of about 10 secret bits per second across distances of up to 1000 km.
arXiv Detail & Related papers (2024-01-22T22:56:50Z) - Quantum Optical Memory for Entanglement Distribution [52.77024349608834]
Entanglement of quantum states over long distances can empower quantum computing, quantum communications, and quantum sensing.
Over the past two decades, quantum optical memories with high fidelity, high efficiencies, long storage times, and promising multiplexing capabilities have been developed.
arXiv Detail & Related papers (2023-04-19T03:18:51Z) - Deterministic Storage and Retrieval of Telecom Quantum Dot Photons
Interfaced with an Atomic Quantum Memory [0.0]
We store photons from a semiconductor quantum dot in an atomic ensemble quantum memory at telecommunications wavelengths.
The signal-to-noise ratio of the retrieved photons is $18.2pm 0.6$, limited only by detector dark counts.
This demonstration paves the way to quantum technologies that rely on distributed entanglement, and is especially suited for photonic quantum networks.
arXiv Detail & Related papers (2023-03-07T19:00:01Z) - QUICK$^3$ -- Design of a satellite-based quantum light source for
quantum communication and extended physical theory tests in space [73.86330563258117]
Single photon source can enhance secure data rates in satellite-based quantum key distribution scenarios.
payload is being integrated into a 3U CubeSat and scheduled for launch in 2024 into low Earth orbit.
arXiv Detail & Related papers (2023-01-26T15:34:11Z) - Simulation of Entanglement Generation between Absorptive Quantum
Memories [56.24769206561207]
We use the open-source Simulator of QUantum Network Communication (SeQUeNCe), developed by our team, to simulate entanglement generation between two atomic frequency comb (AFC) absorptive quantum memories.
We realize the representation of photonic quantum states within truncated Fock spaces in SeQUeNCe.
We observe varying fidelity with SPDC source mean photon number, and varying entanglement generation rate with both mean photon number and memory mode number.
arXiv Detail & Related papers (2022-12-17T05:51:17Z) - Field-deployable Quantum Memory for Quantum Networking [62.72060057360206]
We present a quantum memory engineered to meet real-world deployment and scaling challenges.
The memory technology utilizes a warm rubidium vapor as the storage medium, and operates at room temperature.
We demonstrate performance specifications of high-fidelity retrieval (95%) and low operation error $(10-2)$ at a storage time of 160 $mu s$ for single-photon level quantum memory operations.
arXiv Detail & Related papers (2022-05-26T00:33:13Z) - Entanglement between a telecom photon and an on-demand multimode
solid-state quantum memory [52.77024349608834]
We show the first demonstration of entanglement between a telecom photon and a collective spin excitation in a multimode solid-state quantum memory.
We extend the entanglement storage in the quantum memory for up to 47.7$mu$s, which could allow for the distribution of entanglement between quantum nodes separated by distances of up to 10 km.
arXiv Detail & Related papers (2021-06-09T13:59:26Z) - Telecom-heralded entanglement between remote multimode solid-state
quantum memories [55.41644538483948]
Future quantum networks will enable the distribution of entanglement between distant locations and allow applications in quantum communication, quantum sensing and distributed quantum computation.
Here we report the demonstration of heralded entanglement between two spatially separated quantum nodes, where the entanglement is stored in multimode solid-state quantum memories.
We also show that the generated entanglement is robust against loss in the heralding path, and demonstrate temporally multiplexed operation, with 62 temporal modes.
arXiv Detail & Related papers (2021-01-13T14:31:54Z) - A network-ready random-access qubits memory [0.0]
Photonic qubits memories are essential ingredients of numerous quantum networking protocols.
We demonstrate a random-access multi-qubit write-read memory for photons using two rubidium atoms coupled to the same mode of an optical cavity.
The combined write-read efficiency is 26% and the coherence time approaches 1ms.
arXiv Detail & Related papers (2020-11-02T08:23:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.