Entangling quantum memories over 420 km in fiber
- URL: http://arxiv.org/abs/2504.05660v1
- Date: Tue, 08 Apr 2025 04:19:24 GMT
- Title: Entangling quantum memories over 420 km in fiber
- Authors: Xi-Yu Luo, Chao-Yang Wang, Ming-Yang Zheng, Bin Wang, Jian-Long Liu, Bo-Feng Gao, Jun Li, Zi Yan, Qiao-Mu Ke, Da Teng, Rui-Chun Wang, Jun Wu, Jia Huang, Hao Li, Li-Xing You, Xiu-Ping Xie, Feihu Xu, Qiang Zhang, Xiao-Hui Bao, Jian-Wei Pan,
- Abstract summary: Long-distance entanglement is pivotal for quantum communication, distributed quantum computing and sensing.<n>We make a significant step further by reporting the entanglement between two atomic ensemble quantum memories over 420 km.<n>We employ the DLCZ scheme for remote entanglement generation, and delicately stabilize the relative phase between the two memories.
- Score: 18.181261629800787
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Long-distance entanglement is pivotal for quantum communication, distributed quantum computing and sensing. Significant progresses have been made in extending the distribution distance of entangled photons, either in free space or fiber. For future quantum network applications, matter-based entanglement is more favorable since the capability of storage is essential for advanced applications. Extending entanglement distance for memory qubits was partially hindered by the mismatch of its photonic emission wavelength with the low-loss transmission window of optical fiber. By incorporating quantum frequency conversion, memory-memory entanglement has been successfully extended to several tens of kilometers. Here, we make a significant step further by reporting the entanglement between two atomic ensemble quantum memories over 420 km. We convert photons emitted from the memories to telecom S-band, which enable us to exploit the significantly low transmission loss in fiber (0.17 dB/km). We employ the DLCZ scheme for remote entanglement generation, and delicately stabilize the relative phase between the two memories by using fulltime far-off-resonant locking to reduce high-frequency noise and intermittent dual-band locking to compensate low-frequency drift jointly. We demonstrate that the memory-memory entangling probability beats the repeaterless channel capacity for direct entanglement distribution. Our experiment provides a testbed of studying quantum network applications from metropolitan scale to intercity scale.
Related papers
- High-fidelity entanglement between a telecom photon and a room-temperature quantum memory [40.71478454459572]
Entanglement distribution through existing telecommunication infrastructure is crucial for realizing large-scale quantum networks.
We report an important milestone in quantum repeater architecture by demonstrating entanglement between a telecom-wavelength (1324 nm) photon and a room-temperature quantum memory with a fidelity up to 90.2%.
arXiv Detail & Related papers (2025-03-14T16:32:59Z) - Fast delivery of heralded atom-photon quantum correlation over 12km fiber through multiplexing enhancement [2.7904329327844803]
We experimentally realize multiplexing-enhanced generation of heralded atom-photon quantum correlation over a 12km fiber.
The heralding rate of atom-photon correlation can reach 1.95kHz, and the ratio between the quantum correlation generation rate to memory decoherence rate can be improved to 0.46.
arXiv Detail & Related papers (2024-03-20T14:15:40Z) - Long-lived quantum memory enabling atom-photon entanglement over 101 km
telecom fiber [2.4298261290423233]
We report on developments extending the reach for sharing entanglement between a single $87$Rb atom and a single photon over long optical fibers.
To maintain a high fidelity during the long flight times through such fibers, the coherence time of the single atom is prolonged to 7 ms by applying a long-lived qubit encoding.
This enables to observe entanglement between the atomic quantum memory and the emitted photon after passing 101 km of optical fiber with a fidelity better than 70.8$pm$2.4%.
arXiv Detail & Related papers (2023-08-17T10:00:22Z) - Quantum Optical Memory for Entanglement Distribution [52.77024349608834]
Entanglement of quantum states over long distances can empower quantum computing, quantum communications, and quantum sensing.
Over the past two decades, quantum optical memories with high fidelity, high efficiencies, long storage times, and promising multiplexing capabilities have been developed.
arXiv Detail & Related papers (2023-04-19T03:18:51Z) - Transmission of light-matter entanglement over a metropolitan network [0.0]
We report on the transmission of telecom photons entangled with a multimode solid-state quantum memory over a deployed optical fiber in a metropolitan area.
We measured highly-non-classical correlations between the stored and the telecom photons for storage times up to 25 $mu$s and for a fibre separation up to 50 km.
We also report light-matter entanglement with a two-qubit fidelity up to 88$%$, which remains constant within error bars for all fibre lengths.
arXiv Detail & Related papers (2023-04-11T18:00:02Z) - Quantum storage of entangled photons at telecom wavelengths in a crystal [11.523962992775655]
We demonstrate the storage and recall of entangled state of two telecom photons generated from an integrated photonic chip.
Results pave the way for realizing quantum networks based on solid-state devices.
arXiv Detail & Related papers (2022-12-25T12:51:35Z) - Field-deployable Quantum Memory for Quantum Networking [62.72060057360206]
We present a quantum memory engineered to meet real-world deployment and scaling challenges.
The memory technology utilizes a warm rubidium vapor as the storage medium, and operates at room temperature.
We demonstrate performance specifications of high-fidelity retrieval (95%) and low operation error $(10-2)$ at a storage time of 160 $mu s$ for single-photon level quantum memory operations.
arXiv Detail & Related papers (2022-05-26T00:33:13Z) - Entangling metropolitan-distance separated quantum memories [22.27673691110657]
A prototype is a network of quantum memories that are entangled and well separated.
We create atom-photon entanglement in one node and send the photon to a second node for storage.
The final memory-memory entanglement is verified to have a fidelity of 90% via retrieving to photons.
arXiv Detail & Related papers (2022-01-28T06:25:24Z) - Storage and analysis of light-matter entanglement in a fibre-integrated
system [48.7576911714538]
We demonstrate a fiber-integrated quantum memory entangled with a photon at telecommunication wavelength.
The storage device is based on a fiber-pigtailed laser written waveguide in a rare-earth doped solid and allows an all-fiber stable adressing of the memory.
Our results feature orders of magnitude advances in terms of storage time and efficiency for integrated storage of light-matter entanglement, and constitute a significant step forward towards quantum networks using integrated devices.
arXiv Detail & Related papers (2022-01-10T14:28:04Z) - Entanglement between a telecom photon and an on-demand multimode
solid-state quantum memory [52.77024349608834]
We show the first demonstration of entanglement between a telecom photon and a collective spin excitation in a multimode solid-state quantum memory.
We extend the entanglement storage in the quantum memory for up to 47.7$mu$s, which could allow for the distribution of entanglement between quantum nodes separated by distances of up to 10 km.
arXiv Detail & Related papers (2021-06-09T13:59:26Z) - Telecom-heralded entanglement between remote multimode solid-state
quantum memories [55.41644538483948]
Future quantum networks will enable the distribution of entanglement between distant locations and allow applications in quantum communication, quantum sensing and distributed quantum computation.
Here we report the demonstration of heralded entanglement between two spatially separated quantum nodes, where the entanglement is stored in multimode solid-state quantum memories.
We also show that the generated entanglement is robust against loss in the heralding path, and demonstrate temporally multiplexed operation, with 62 temporal modes.
arXiv Detail & Related papers (2021-01-13T14:31:54Z) - A Frequency-Multiplexed Coherent Electro-Optic Memory in Rare Earth
Doped Nanoparticles [94.37521840642141]
Quantum memories for light are essential components in quantum technologies like long-distance quantum communication and distributed quantum computing.
Recent studies have shown that long optical and spin coherence lifetimes can be observed in rare earth doped nanoparticles.
We report on coherent light storage in Eu$3+$:Y$$O$_3$ nanoparticles using the Stark Echo Modulation Memory (SEMM) quantum protocol.
arXiv Detail & Related papers (2020-06-17T13:25:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.