HEAT: Hyperedge Attention Networks
- URL: http://arxiv.org/abs/2201.12113v1
- Date: Fri, 28 Jan 2022 13:42:01 GMT
- Title: HEAT: Hyperedge Attention Networks
- Authors: Dobrik Georgiev, Marc Brockschmidt, Miltiadis Allamanis
- Abstract summary: HEAT is a neural model capable of representing typed and qualified hypergraphs.
It can be viewed as a generalization of both message passing neural networks and Transformers.
We evaluate it on knowledge base completion and on bug detection and repair using a novel hypergraph representation of programs.
- Score: 34.65832569321654
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning from structured data is a core machine learning task. Commonly, such
data is represented as graphs, which normally only consider (typed) binary
relationships between pairs of nodes. This is a substantial limitation for many
domains with highly-structured data. One important such domain is source code,
where hypergraph-based representations can better capture the semantically rich
and structured nature of code.
In this work, we present HEAT, a neural model capable of representing typed
and qualified hypergraphs, where each hyperedge explicitly qualifies how
participating nodes contribute. It can be viewed as a generalization of both
message passing neural networks and Transformers. We evaluate HEAT on knowledge
base completion and on bug detection and repair using a novel hypergraph
representation of programs. In both settings, it outperforms strong baselines,
indicating its power and generality.
Related papers
- Hypergraph Transformer for Semi-Supervised Classification [50.92027313775934]
We propose a novel hypergraph learning framework, HyperGraph Transformer (HyperGT)
HyperGT uses a Transformer-based neural network architecture to effectively consider global correlations among all nodes and hyperedges.
It achieves comprehensive hypergraph representation learning by effectively incorporating global interactions while preserving local connectivity patterns.
arXiv Detail & Related papers (2023-12-18T17:50:52Z) - Hypergraph Node Representation Learning with One-Stage Message Passing [28.311325846217574]
We propose a novel one-stage message passing paradigm to model both global and local information propagation for hypergraphs.
We integrate this paradigm into HGraphormer, a Transformer-based framework for hypergraph node representation learning.
arXiv Detail & Related papers (2023-12-01T04:10:00Z) - UniG-Encoder: A Universal Feature Encoder for Graph and Hypergraph Node
Classification [6.977634174845066]
A universal feature encoder for both graph and hypergraph representation learning is designed, called UniG-Encoder.
The architecture starts with a forward transformation of the topological relationships of connected nodes into edge or hyperedge features.
The encoded node embeddings are then derived from the reversed transformation, described by the transpose of the projection matrix.
arXiv Detail & Related papers (2023-08-03T09:32:50Z) - From Hypergraph Energy Functions to Hypergraph Neural Networks [94.88564151540459]
We present an expressive family of parameterized, hypergraph-regularized energy functions.
We then demonstrate how minimizers of these energies effectively serve as node embeddings.
We draw parallels between the proposed bilevel hypergraph optimization, and existing GNN architectures in common use.
arXiv Detail & Related papers (2023-06-16T04:40:59Z) - Classification of Edge-dependent Labels of Nodes in Hypergraphs [17.454063924648896]
We introduce a classification of edge-dependent node labels as a new problem.
This problem can be used as a benchmark task for hypergraph neural networks.
We propose WHATsNet, a novel hypergraph neural network that represents the same node differently depending on the hyperedges it participates in.
arXiv Detail & Related papers (2023-06-05T16:50:34Z) - Seq-HGNN: Learning Sequential Node Representation on Heterogeneous Graph [57.2953563124339]
We propose a novel heterogeneous graph neural network with sequential node representation, namely Seq-HGNN.
We conduct extensive experiments on four widely used datasets from Heterogeneous Graph Benchmark (HGB) and Open Graph Benchmark (OGB)
arXiv Detail & Related papers (2023-05-18T07:27:18Z) - Dynamic Graph Message Passing Networks for Visual Recognition [112.49513303433606]
Modelling long-range dependencies is critical for scene understanding tasks in computer vision.
A fully-connected graph is beneficial for such modelling, but its computational overhead is prohibitive.
We propose a dynamic graph message passing network, that significantly reduces the computational complexity.
arXiv Detail & Related papers (2022-09-20T14:41:37Z) - A Robust Stacking Framework for Training Deep Graph Models with
Multifaceted Node Features [61.92791503017341]
Graph Neural Networks (GNNs) with numerical node features and graph structure as inputs have demonstrated superior performance on various supervised learning tasks with graph data.
The best models for such data types in most standard supervised learning settings with IID (non-graph) data are not easily incorporated into a GNN.
Here we propose a robust stacking framework that fuses graph-aware propagation with arbitrary models intended for IID data.
arXiv Detail & Related papers (2022-06-16T22:46:33Z) - Hypergraph Convolutional Networks via Equivalency between Hypergraphs
and Undirected Graphs [59.71134113268709]
We present General Hypergraph Spectral Convolution(GHSC), a general learning framework that can handle EDVW and EIVW hypergraphs.
In this paper, we show that the proposed framework can achieve state-of-the-art performance.
Experiments from various domains including social network analysis, visual objective classification, protein learning demonstrate that the proposed framework can achieve state-of-the-art performance.
arXiv Detail & Related papers (2022-03-31T10:46:47Z) - Adaptive Neural Message Passing for Inductive Learning on Hypergraphs [21.606287447052757]
We present HyperMSG, a novel hypergraph learning framework.
It adapts to the data and task by learning an attention weight associated with each node's degree centrality.
It is robust and outperforms state-of-the-art hypergraph learning methods on a wide range of tasks and datasets.
arXiv Detail & Related papers (2021-09-22T12:24:02Z) - HyperSAGE: Generalizing Inductive Representation Learning on Hypergraphs [24.737560790401314]
We present HyperSAGE, a novel hypergraph learning framework that uses a two-level neural message passing strategy to accurately and efficiently propagate information through hypergraphs.
We show that HyperSAGE outperforms state-of-the-art hypergraph learning methods on representative benchmark datasets.
arXiv Detail & Related papers (2020-10-09T13:28:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.