Dynamical abelian anyons with bound states and scattering states
- URL: http://arxiv.org/abs/2303.07379v1
- Date: Mon, 13 Mar 2023 18:01:02 GMT
- Title: Dynamical abelian anyons with bound states and scattering states
- Authors: Sven Bachmann, Bruno Nachtergaele, Siddharth Vadnerkar
- Abstract summary: We introduce a family of quantum spin Hamiltonians on $mathbbZ2$.
In particular, the anyons exhibit a non-trivial holonomy with a quantized phase, consistent with the gauge and duality symmetries of the Hamiltonian.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a family of quantum spin Hamiltonians on $\mathbb{Z}^2$ that can
be regarded as perturbations of Kitaev's abelian quantum double models that
preserve the gauge and duality symmetries of these models. We analyze in detail
the sector with one electric charge and one magnetic flux and show that the
spectrum in this sector consists of both bound states and scattering states of
abelian anyons. Concretely, we have defined a family of lattice models in which
abelian anyons arise naturally as finite-size quasi-particles with non-trivial
dynamics that consist of a charge-flux pair. In particular, the anyons exhibit
a non-trivial holonomy with a quantized phase, consistent with the gauge and
duality symmetries of the Hamiltonian.
Related papers
- Exactly solvable models for fermionic symmetry-enriched topological phases and fermionic 't Hooft anomaly [33.49184078479579]
The interplay between symmetry and topological properties plays a very important role in modern physics.
How to realize all these fermionic SET (fSET) phases in lattice models remains to be a difficult open problem.
arXiv Detail & Related papers (2024-10-24T19:52:27Z) - Non-Abelian quantum geometric tensor in degenerate topological semimetals [4.00041392024119]
We propose a generic Hamiltonian with global degenerate ground states, and give a general relation between the corresponding non-Abelian quantum metric and unit Bloch vector.
To be concrete, we present and study two topological semimetal models with global degenerate bands under CP and $CT$ symmetries.
arXiv Detail & Related papers (2023-12-02T09:33:37Z) - Emergence of non-Abelian SU(2) invariance in Abelian frustrated
fermionic ladders [37.69303106863453]
We consider a system of interacting spinless fermions on a two-leg triangular ladder with $pi/2$ magnetic flux per triangular plaquette.
Microscopically, the system exhibits a U(1) symmetry corresponding to the conservation of total fermionic charge, and a discrete $mathbbZ$ symmetry.
At the intersection of the three phases, the system features a critical point with an emergent SU(2) symmetry.
arXiv Detail & Related papers (2023-05-11T15:57:27Z) - Non-Gaussian superradiant transition via three-body ultrastrong coupling [62.997667081978825]
We introduce a class of quantum optical Hamiltonian characterized by three-body couplings.
We propose a circuit-QED scheme based on state-of-the-art technology that implements the considered model.
arXiv Detail & Related papers (2022-04-07T15:39:21Z) - Electric-magnetic duality and $\mathbb{Z}_2$ symmetry enriched Abelian lattice gauge theory [2.206623168926072]
Kitaev's quantum double model is a lattice gauge theoretic realization of Dijkgraaf-Witten topological quantum field theory (TQFT)
Topologically protected ground state space has broad applications for topological quantum computation and topological quantum memory.
arXiv Detail & Related papers (2022-01-28T14:13:38Z) - Qubit regularization of asymptotic freedom [35.37983668316551]
Heisenberg-comb acts on a Hilbert space with only two qubits per spatial lattice site.
We show that the model reproduces the universal step-scaling function of the traditional model up to correlation lengths of 200,000 in lattice units.
We argue that near-term quantum computers may suffice to demonstrate freedom.
arXiv Detail & Related papers (2020-12-03T18:41:07Z) - Particle on the sphere: group-theoretic quantization in the presence of
a magnetic monopole [0.0]
We consider the problem of quantizing a particle on a 2-sphere.
We construct the Hilbert space directly from the symmetry algebra.
We show how the Casimir invariants of the algebra determine the bundle topology.
arXiv Detail & Related papers (2020-11-10T04:42:08Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Models of zero-range interaction for the bosonic trimer at unitarity [91.3755431537592]
We present the construction of quantum Hamiltonians for a three-body system consisting of identical bosons mutually coupled by a two-body interaction of zero range.
For a large part of the presentation, infinite scattering length will be considered.
arXiv Detail & Related papers (2020-06-03T17:54:43Z) - Anyon Quantum Transport and Noise away from Equilibrium [0.0]
We investigate the quantum transport of anyons in one space dimension.
A non-equilibrium representation of the physical observables is constructed.
The dependence of the relative noise power on the statistical parameter is established.
arXiv Detail & Related papers (2020-05-27T12:33:09Z) - Stationary State Degeneracy of Open Quantum Systems with Non-Abelian
Symmetries [3.423206565777368]
We study the null space degeneracy of open quantum systems with multiple non-Abelian, strong symmetries.
We apply these results within the context of open quantum many-body systems.
We find that the derived bound, which scales at least cubically in the system size the $SU(2)$ symmetric cases, is often saturated.
arXiv Detail & Related papers (2019-12-27T15:50:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.