論文の概要: DeepRNG: Towards Deep Reinforcement Learning-Assisted Generative Testing
of Software
- arxiv url: http://arxiv.org/abs/2201.12602v1
- Date: Sat, 29 Jan 2022 15:07:02 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-01 15:36:31.802727
- Title: DeepRNG: Towards Deep Reinforcement Learning-Assisted Generative Testing
of Software
- Title(参考訳): deeprng: ソフトウェアの深層強化学習支援生成テストに向けて
- Authors: Chuan-Yung Tsai, Graham W. Taylor
- Abstract要約: 本稿では,RNG(ランダム数生成器)を深部強化学習(RL)エージェントで直接増強することにより,ソフトウェアの生成試験を改善することを目的とする。
提案したDeepRNGフレームワークは,350,000行以上のコードを持つ高度に複雑なソフトウェアライブラリのテストに対して,統計的に有意な改善を提供することを示す。
- 参考スコア(独自算出の注目度): 18.19171031755595
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although machine learning (ML) has been successful in automating various
software engineering needs, software testing still remains a highly challenging
topic. In this paper, we aim to improve the generative testing of software by
directly augmenting the random number generator (RNG) with a deep reinforcement
learning (RL) agent using an efficient, automatically extractable state
representation of the software under test. Using the Cosmos SDK as the testbed,
we show that the proposed DeepRNG framework provides a statistically
significant improvement to the testing of the highly complex software library
with over 350,000 lines of code. The source code of the DeepRNG framework is
publicly available online.
- Abstract(参考訳): 機械学習(ML)はさまざまなソフトウェアエンジニアリングニーズの自動化に成功しているが、ソフトウェアテストは依然として非常に難しいトピックである。
本稿では,テスト対象のソフトウェアを効率よく自動抽出可能な状態表現を用いて,RLエージェントを用いて乱数生成器(RNG)を直接増強することにより,ソフトウェアの生成テストを改善することを目的とする。
cosmos sdk をテストベッドとして使用することにより,提案する deeprng フレームワークが,35万行以上のコードを持つ高度に複雑なソフトウェアライブラリのテストに対して,統計的に有意な改善をもたらすことを示す。
DeepRNGフレームワークのソースコードはオンラインで公開されている。
関連論文リスト
- Harnessing the Power of LLMs: Automating Unit Test Generation for High-Performance Computing [7.3166218350585135]
ユニットテストは、品質を保証するために、ソフトウェア工学において不可欠です。
並列処理や高性能計算ソフトウェア、特に科学応用では広く使われていない。
本稿では,このようなソフトウェアを対象としたユニットテストの自動生成手法を提案する。
論文 参考訳(メタデータ) (2024-07-06T22:45:55Z) - Agent-Driven Automatic Software Improvement [55.2480439325792]
本提案は,Large Language Models (LLMs) を利用したエージェントの展開に着目して,革新的なソリューションの探求を目的とする。
継続的学習と適応を可能にするエージェントの反復的性質は、コード生成における一般的な課題を克服するのに役立ちます。
我々は,これらのシステムにおける反復的なフィードバックを用いて,エージェントの基盤となるLLMをさらに微調整し,自動化されたソフトウェア改善のタスクに整合性を持たせることを目指している。
論文 参考訳(メタデータ) (2024-06-24T15:45:22Z) - SWT-Bench: Testing and Validating Real-World Bug-Fixes with Code Agents [10.730852617039451]
ユーザ問題をテストケースに形式化するLLMベースのコードエージェントについて検討する。
我々は人気のあるGitHubリポジトリに基づいた新しいベンチマークを提案し、現実世界の問題、地味なバグフィックス、ゴールデンテストを含む。
コード修復用に設計されたコードエージェントは,テスト生成用に設計されたシステムの性能を上回っている。
論文 参考訳(メタデータ) (2024-06-18T14:54:37Z) - The Power of Resets in Online Reinforcement Learning [73.64852266145387]
ローカルシミュレータアクセス(あるいはローカルプランニング)を用いたオンライン強化学習を通してシミュレータのパワーを探求する。
カバー性が低いMPPは,Qstar$-realizabilityのみのサンプル効率で学習可能であることを示す。
ローカルシミュレーターアクセス下では, 悪名高いExogenous Block MDP問題が抽出可能であることを示す。
論文 参考訳(メタデータ) (2024-04-23T18:09:53Z) - AutoCodeRover: Autonomous Program Improvement [8.66280420062806]
プログラムの改善を自律的に達成するために、GitHubの問題を解決する自動化アプローチを提案する。
AutoCodeRoverと呼ばれるアプローチでは、LLMは洗練されたコード検索機能と組み合わせられ、最終的にプログラムの変更やパッチにつながります。
SWE-bench-lite(300の現実のGitHubイシュー)の実験では、GitHubの問題を解決する効果が向上している(SWE-bench-liteでは19%)。
論文 参考訳(メタデータ) (2024-04-08T11:55:09Z) - SOEN-101: Code Generation by Emulating Software Process Models Using Large Language Model Agents [50.82665351100067]
FlowGenは、複数のLarge Language Model (LLM)エージェントに基づいたソフトウェアプロセスモデルをエミュレートするコード生成フレームワークである。
FlowGenScrumをHumanEval、HumanEval-ET、MBPP、MBPP-ETの4つのベンチマークで評価した。
論文 参考訳(メタデータ) (2024-03-23T14:04:48Z) - CodePori: Large-Scale System for Autonomous Software Development Using Multi-Agent Technology [4.2990995991059275]
大規模言語モデル(LLM)とGPT(Generative Pre-trained Transformer)は、ソフトウェア工学の分野を変えました。
我々は,大規模かつ複雑なソフトウェアプロジェクトのコード生成を自動化するように設計された,新しいシステムであるCodePoriを紹介する。
結果: CodePoriは、典型的なソフトウェア開発プロセスに合わせて、大規模プロジェクトの実行コードを生成することができる。
論文 参考訳(メタデータ) (2024-02-02T13:42:50Z) - SERL: A Software Suite for Sample-Efficient Robotic Reinforcement
Learning [85.21378553454672]
筆者らは,報酬の計算と環境のリセットを行う手法とともに,効率的なオフ・ポリティクス・ディープ・RL法を含むライブラリを開発した。
我々は,PCBボードアセンブリ,ケーブルルーティング,オブジェクトの移動に関するポリシを,非常に効率的な学習を実現することができることを発見した。
これらの政策は完全な成功率またはほぼ完全な成功率、摂動下でさえ極端な堅牢性を実現し、突発的な堅牢性回復と修正行動を示す。
論文 参考訳(メタデータ) (2024-01-29T10:01:10Z) - Using Machine Learning To Identify Software Weaknesses From Software
Requirement Specifications [49.1574468325115]
本研究は、要求仕様からソフトウェア弱点を特定するための効率的な機械学習アルゴリズムを見つけることに焦点を当てる。
ProMISE_exp. Naive Bayes、サポートベクターマシン(SVM)、決定木、ニューラルネットワーク、畳み込みニューラルネットワーク(CNN)アルゴリズムをテストした。
論文 参考訳(メタデータ) (2023-08-10T13:19:10Z) - Genetic Micro-Programs for Automated Software Testing with Large Path
Coverage [0.0]
既存のソフトウェアテスト技術は、検索アルゴリズムを利用して、高い実行パスカバレッジを実現する入力値を見つけることに重点を置いている。
本稿では、進化したソリューションが入力値ではなく、繰り返し入力値を生成するマイクロプログラムである新しい遺伝的プログラミングフレームワークの概要を述べる。
我々のアプローチは多くの異なるソフトウェアシステムに適用できるような一般化が可能であり、そのため、トレーニングされた特定のソフトウェアコンポーネントのみに特化していない、と我々は主張する。
論文 参考訳(メタデータ) (2023-02-14T18:47:21Z) - CodeRL: Mastering Code Generation through Pretrained Models and Deep
Reinforcement Learning [92.36705236706678]
CodeRLは、事前訓練されたLMと深層強化学習によるプログラム合成タスクのための新しいフレームワークである。
推論中、我々は重要なサンプリング戦略を持つ新しい生成手順を導入する。
モデルバックボーンについては,CodeT5のエンコーダデコーダアーキテクチャを拡張し,学習目標を拡張した。
論文 参考訳(メタデータ) (2022-07-05T02:42:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。