Spectral image clustering on dual-energy CT scans using functional
regression mixtures
- URL: http://arxiv.org/abs/2201.13398v1
- Date: Mon, 31 Jan 2022 18:04:43 GMT
- Title: Spectral image clustering on dual-energy CT scans using functional
regression mixtures
- Authors: Segolene Brivet, Faicel Chamroukhi, Mark Coates, Reza Forghani, and
Peter Savadjiev
- Abstract summary: Dual-energy computed tomography (DECT) is an advanced CT scanning technique enabling material characterization not possible with conventional CT scans.
It allows the reconstruction of energy decay curves at each 3D image voxel, representing varying image attenuation at different effective energy levels.
- Score: 12.194046749285425
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dual-energy computed tomography (DECT) is an advanced CT scanning technique
enabling material characterization not possible with conventional CT scans. It
allows the reconstruction of energy decay curves at each 3D image voxel,
representing varying image attenuation at different effective scanning energy
levels. In this paper, we develop novel functional data analysis (FDA)
techniques and adapt them to the analysis of DECT decay curves. More
specifically, we construct functional mixture models that integrate spatial
context in mixture weights, with mixture component densities being constructed
upon the energy decay curves as functional observations. We design unsupervised
clustering algorithms by developing dedicated expectation maximization (EM)
algorithms for the maximum likelihood estimation of the model parameters. To
our knowledge, this is the first article to adapt statistical FDA tools and
model-based clustering to take advantage of the full spectral information
provided by DECT. We evaluate our methods on 91 head and neck cancer DECT
scans. We compare our unsupervised clustering results to tumor contours traced
manually by radiologists, as well as to several baseline algorithms. Given the
inter-rater variability even among experts at delineating head and neck tumors,
and given the potential importance of tissue reactions surrounding the tumor
itself, our proposed methodology has the potential to add value in downstream
machine learning applications for clinical outcome prediction based on DECT
data in head and neck cancer.
Related papers
- 3D-CT-GPT: Generating 3D Radiology Reports through Integration of Large Vision-Language Models [51.855377054763345]
This paper introduces 3D-CT-GPT, a Visual Question Answering (VQA)-based medical visual language model for generating radiology reports from 3D CT scans.
Experiments on both public and private datasets demonstrate that 3D-CT-GPT significantly outperforms existing methods in terms of report accuracy and quality.
arXiv Detail & Related papers (2024-09-28T12:31:07Z) - End-to-End Model-based Deep Learning for Dual-Energy Computed Tomography Material Decomposition [53.14236375171593]
We propose a deep learning procedure called End-to-End Material Decomposition (E2E-DEcomp) for quantitative material decomposition.
We show the effectiveness of the proposed direct E2E-DEcomp method on the AAPM spectral CT dataset.
arXiv Detail & Related papers (2024-06-01T16:20:59Z) - Integrating Preprocessing Methods and Convolutional Neural Networks for
Effective Tumor Detection in Medical Imaging [0.0]
This research presents a machine-learning approach for tumor detection in medical images using convolutional neural networks (CNNs)
The study focuses on preprocessing techniques to enhance image features relevant to tumor detection, followed by developing and training a CNN model for accurate classification.
Experimental results demonstrate the effectiveness of the proposed approach in accurately detecting tumors in medical images.
arXiv Detail & Related papers (2024-02-25T23:49:05Z) - A Two-Stage Generative Model with CycleGAN and Joint Diffusion for
MRI-based Brain Tumor Detection [41.454028276986946]
We propose a novel framework Two-Stage Generative Model (TSGM) to improve brain tumor detection and segmentation.
CycleGAN is trained on unpaired data to generate abnormal images from healthy images as data prior.
VE-JP is implemented to reconstruct healthy images using synthetic paired abnormal images as a guide.
arXiv Detail & Related papers (2023-11-06T12:58:26Z) - Quantum optimization algorithms for CT image segmentation from X-ray data [0.0]
This paper introduces a new approach using an advanced quantum optimization algorithm called quadratic unconstrained binary optimization (QUBO)
It enables acquisition of segmented CT images from X-ray projection data with minimized discrepancies between experimentally obtained sinograms and quantized sinograms derived from quantized segmented CT images using the Radon transform.
This study utilized D-Wave's hybrid solver system for verification on real-world X-ray data.
arXiv Detail & Related papers (2023-06-08T19:37:43Z) - Orientation-Shared Convolution Representation for CT Metal Artifact
Learning [63.67718355820655]
During X-ray computed tomography (CT) scanning, metallic implants carrying with patients often lead to adverse artifacts.
Existing deep-learning-based methods have gained promising reconstruction performance.
We propose an orientation-shared convolution representation strategy to adapt the physical prior structures of artifacts.
arXiv Detail & Related papers (2022-12-26T13:56:12Z) - Multi-Channel Convolutional Analysis Operator Learning for Dual-Energy
CT Reconstruction [108.06731611196291]
We develop a multi-channel convolutional analysis operator learning (MCAOL) method to exploit common spatial features within attenuation images at different energies.
We propose an optimization method which jointly reconstructs the attenuation images at low and high energies with a mixed norm regularization on the sparse features.
arXiv Detail & Related papers (2022-03-10T14:22:54Z) - Self-Attention Generative Adversarial Network for Iterative
Reconstruction of CT Images [0.9208007322096533]
The aim of this study is to train a single neural network to reconstruct high-quality CT images from noisy or incomplete data.
The network includes a self-attention block to model long-range dependencies in the data.
Our approach is shown to have comparable overall performance to CIRCLE GAN, while outperforming the other two approaches.
arXiv Detail & Related papers (2021-12-23T19:20:38Z) - Prediction of low-keV monochromatic images from polyenergetic CT scans
for improved automatic detection of pulmonary embolism [21.47219330040151]
We are training convolutional neural networks that can emulate the generation of monoE images from conventional single energy CT acquisitions.
We expand on these methods through the use of a multi-task optimization approach, under which the networks achieve improved classification as well as generation results.
arXiv Detail & Related papers (2021-02-02T11:42:31Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.