論文の概要: Graph-based Neural Acceleration for Nonnegative Matrix Factorization
- arxiv url: http://arxiv.org/abs/2202.00264v1
- Date: Tue, 1 Feb 2022 07:52:01 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-02 22:25:26.384619
- Title: Graph-based Neural Acceleration for Nonnegative Matrix Factorization
- Title(参考訳): 非負行列因子化のためのグラフベースニューラル加速法
- Authors: Jens Sj\"olund and Maria B{\aa}nkestad
- Abstract要約: 非負行列分解のためのグラフベースのニューラルアクセラレーション手法について述べる。
我々は,乗算器の交互方向法に基づく更新により,二部構成の自己認識層をインターリーブするグラフニューラルネットワークを訓練する。
実世界のデータセットと2つの実世界のデータセットに対する評価は、より小さな合成インスタンスで教師なしの訓練をしても、かなり加速できることを示している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We describe a graph-based neural acceleration technique for nonnegative
matrix factorization that builds upon a connection between matrices and
bipartite graphs that is well-known in certain fields, e.g., sparse linear
algebra, but has not yet been exploited to design graph neural networks for
matrix computations. We first consider low-rank factorization more broadly and
propose a graph representation of the problem suited for graph neural networks.
Then, we focus on the task of nonnegative matrix factorization and propose a
graph neural network that interleaves bipartite self-attention layers with
updates based on the alternating direction method of multipliers. Our empirical
evaluation on synthetic and two real-world datasets shows that we attain
substantial acceleration, even though we only train in an unsupervised fashion
on smaller synthetic instances.
- Abstract(参考訳): 本稿では,非負行列分解のためのグラフに基づくニューラルネットワークの高速化手法について述べる。これは行列と2部グラフの連結を基盤とし,ある分野(例えばスパース線形代数)でよく知られているが,行列計算のためのグラフニューラルネットワークの設計にはまだ活用されていない。
まず,低ランク分解をより広く検討し,グラフニューラルネットワークに適した問題のグラフ表現を提案する。
そこで我々は,非負行列分解の課題に焦点をあて,乗算器の交互方向法に基づく更新で二部的自己認識層をインターリーブするグラフニューラルネットワークを提案する。
人工的なデータセットと2つの実世界のデータセットに対する実証的な評価は、より小さな合成インスタンスに対して教師なしの方法でのみ訓練しても、かなり加速できることを示している。
関連論文リスト
- Low-Rank Covariance Completion for Graph Quilting with Applications to Functional Connectivity [8.500141848121782]
多くのカルシウムイメージングデータセットでは、ニューロンの全個体数は同時に記録されるのではなく、部分的に重なるブロックに記録される。
本稿では、まず、低ランクココンプリートを用いた原子核構造行列を暗示するグラフ量子化法について述べる。
カルシウムイメージングデータから接続性を推定するためのこれらの手法の有効性を示す。
論文 参考訳(メタデータ) (2022-09-17T08:03:46Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
本稿では、観測されたグラフと潜伏グラフのグラフ畳み込み関係を提案し、グラフ学習タスクをネットワーク逆(デコンボリューション)問題として定式化する。
固有分解に基づくスペクトル法の代わりに、近似勾配反復をアンロール・トランケートして、グラフデコンボリューションネットワーク(GDN)と呼ばれるパラメータ化ニューラルネットワークアーキテクチャに到達させる。
GDNは、教師付き方式でグラフの分布を学習し、損失関数を適応させることでリンク予測やエッジウェイト回帰タスクを実行し、本質的に帰納的である。
論文 参考訳(メタデータ) (2022-05-19T14:08:15Z) - Graph Kernel Neural Networks [53.91024360329517]
本稿では、グラフ上の内部積を計算するカーネル関数であるグラフカーネルを用いて、標準畳み込み演算子をグラフ領域に拡張することを提案する。
これにより、入力グラフの埋め込みを計算する必要のない完全に構造的なモデルを定義することができる。
私たちのアーキテクチャでは,任意の種類のグラフカーネルをプラグインすることが可能です。
論文 参考訳(メタデータ) (2021-12-14T14:48:08Z) - Scaling Up Graph Neural Networks Via Graph Coarsening [18.176326897605225]
グラフニューラルネットワーク(GNN)のスケーラビリティは、マシンラーニングにおける大きな課題のひとつだ。
本稿では,GNNのスケーラブルなトレーニングにグラフ粗大化を用いることを提案する。
既成の粗大化法を単純に適用すれば,分類精度を著しく低下させることなく,ノード数を最大10倍に削減できることを示す。
論文 参考訳(メタデータ) (2021-06-09T15:46:17Z) - Multilayer Graph Clustering with Optimized Node Embedding [70.1053472751897]
多層グラフクラスタリングは、グラフノードをカテゴリまたはコミュニティに分割することを目指しています。
与えられた多層グラフの層をクラスタリングに親しみやすい埋め込みを提案する。
実験の結果,本手法は著しい改善をもたらすことがわかった。
論文 参考訳(メタデータ) (2021-03-30T17:36:40Z) - Graph-Time Convolutional Neural Networks [9.137554315375919]
第一原理グラフ時間畳み込みニューラルネットワーク(GTCNN)を用いた積グラフによる空間関係の表現
シフト・アンド・テンポラル演算子を追従してグラフタイム畳み込みフィルタを開発し、製品グラフ上の高レベルな特徴を学習する。
アクティブノードの数とパラメータを減らしながら、空間グラフを保存するゼロパッドプーリングを開発しています。
論文 参考訳(メタデータ) (2021-03-02T14:03:44Z) - Multilayer Clustered Graph Learning [66.94201299553336]
我々は、観測された層を代表グラフに適切に集約するために、データ忠実度用語として対照的な損失を用いる。
実験により,本手法がクラスタクラスタw.r.tに繋がることが示された。
クラスタリング問題を解くためのクラスタリングアルゴリズムを学習する。
論文 参考訳(メタデータ) (2020-10-29T09:58:02Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z) - Semiparametric Nonlinear Bipartite Graph Representation Learning with
Provable Guarantees [106.91654068632882]
半パラメトリック指数族分布におけるパラメータの統計的推定問題として、両部グラフを考察し、その表現学習問題を定式化する。
提案手法は, 地中真理付近で強い凸性を示すため, 勾配降下法が線形収束率を達成できることを示す。
我々の推定器は指数族内の任意のモデル誤特定に対して頑健であり、広範な実験で検証されている。
論文 参考訳(メタデータ) (2020-03-02T16:40:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。