論文の概要: Low-Rank Covariance Completion for Graph Quilting with Applications to Functional Connectivity
- arxiv url: http://arxiv.org/abs/2209.08273v2
- Date: Thu, 1 Aug 2024 17:07:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-02 15:07:44.683681
- Title: Low-Rank Covariance Completion for Graph Quilting with Applications to Functional Connectivity
- Title(参考訳): グラフクィルティングのための低ランク共分散補完と機能接続性への応用
- Authors: Andersen Chang, Lili Zheng, Genevera I. Allen,
- Abstract要約: 多くのカルシウムイメージングデータセットでは、ニューロンの全個体数は同時に記録されるのではなく、部分的に重なるブロックに記録される。
本稿では、まず、低ランクココンプリートを用いた原子核構造行列を暗示するグラフ量子化法について述べる。
カルシウムイメージングデータから接続性を推定するためのこれらの手法の有効性を示す。
- 参考スコア(独自算出の注目度): 8.500141848121782
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As a tool for estimating networks in high dimensions, graphical models are commonly applied to calcium imaging data to estimate functional neuronal connectivity, i.e. relationships between the activities of neurons. However, in many calcium imaging data sets, the full population of neurons is not recorded simultaneously, but instead in partially overlapping blocks. This leads to the Graph Quilting problem, as first introduced by (Vinci et.al. 2019), in which the goal is to infer the structure of the full graph when only subsets of features are jointly observed. In this paper, we study a novel two-step approach to Graph Quilting, which first imputes the complete covariance matrix using low-rank covariance completion techniques before estimating the graph structure. We introduce three approaches to solve this problem: block singular value decomposition, nuclear norm penalization, and non-convex low-rank factorization. While prior works have studied low-rank matrix completion, we address the challenges brought by the block-wise missingness and are the first to investigate the problem in the context of graph learning. We discuss theoretical properties of the two-step procedure, showing graph selection consistency of one proposed approach by proving novel L infinity-norm error bounds for matrix completion with block-missingness. We then investigate the empirical performance of the proposed methods on simulations and on real-world data examples, through which we show the efficacy of these methods for estimating functional connectivity from calcium imaging data.
- Abstract(参考訳): 高次元のネットワークを推定するためのツールとして、グラフィカルモデルが一般的にカルシウムイメージングデータに適用され、機能的なニューロンの接続性、すなわちニューロンの活動間の関係を推定する。
しかし、多くのカルシウムイメージングデータセットでは、ニューロンの全個体数は同時に記録されるのではなく、部分的に重なるブロックに記録される。
Vinci et.al. 2019) で最初に紹介されたグラフキルティング問題は、特徴のサブセットのみを共同で観察する場合に、完全なグラフの構造を推測することを目的としている。
本稿では,グラフ構造を推定する前に,まず,低ランクな共分散補完手法を用いて完全共分散行列を暗示するグラフ量子化手法を提案する。
この問題を解決するために,ブロック特異値分解,核ノルムのペナル化,非凸低ランク分解という3つの手法を導入する。
先行研究は低ランク行列補完について研究してきたが、ブロックワイドの欠如に起因する課題に対処し、グラフ学習の文脈でこの問題を最初に研究した。
ブロック欠落を伴う行列補完のための新しいL無限ノルム誤差境界を証明し, 提案手法のグラフ選択整合性を示す2段階法の理論的性質について論じる。
次に,提案手法のシミュレーションおよび実世界のデータ例における実証的な性能について検討し,カルシウムイメージングデータから機能的接続性を推定するための手法の有効性を示す。
関連論文リスト
- Nonparanormal Graph Quilting with Applications to Calcium Imaging [1.1470070927586016]
ガウス図形モデルに基づく非正規グラフクィルティングの2つの手法について検討する。
提案手法は, 既存のガウスグラフキルト法と比較して, より科学的に有意な機能的接続推定値が得られる。
論文 参考訳(メタデータ) (2023-05-22T21:16:01Z) - Localized Contrastive Learning on Graphs [110.54606263711385]
局所グラフコントラスト学習(Local-GCL)という,シンプルだが効果的なコントラストモデルを導入する。
その単純さにもかかわらず、Local-GCLは、様々なスケールと特性を持つグラフ上の自己教師付きノード表現学習タスクにおいて、非常に競争力のある性能を達成する。
論文 参考訳(メタデータ) (2022-12-08T23:36:00Z) - GrannGAN: Graph annotation generative adversarial networks [72.66289932625742]
本稿では,高次元分布をモデル化し,グラフスケルトンと整合した複雑な関係特徴構造を持つデータの新しい例を生成することの問題点を考察する。
提案するモデルは,タスクを2つのフェーズに分割することで,各データポイントのグラフ構造に制約されたデータ特徴を生成する問題に対処する。
第一に、与えられたグラフのノードに関連する機能の分布をモデル化し、第二に、ノードのフィーチャに条件付きでエッジ機能を補完する。
論文 参考訳(メタデータ) (2022-12-01T11:49:07Z) - Graph-based Neural Acceleration for Nonnegative Matrix Factorization [0.0]
非負行列分解のためのグラフベースのニューラルアクセラレーション手法について述べる。
我々は,乗算器の交互方向法に基づく更新により,二部構成の自己認識層をインターリーブするグラフニューラルネットワークを訓練する。
実世界のデータセットと2つの実世界のデータセットに対する評価は、より小さな合成インスタンスで教師なしの訓練をしても、かなり加速できることを示している。
論文 参考訳(メタデータ) (2022-02-01T07:52:01Z) - Graphon based Clustering and Testing of Networks: Algorithms and Theory [11.3700474413248]
ネットワークに価値のあるデータは、幅広いアプリケーションで遭遇し、学習の課題を提起する。
本稿では,2つのクラスタリングアルゴリズムについて述べる。
さらに、グラフ2サンプルテスト問題に対する提案した距離の適用性について検討する。
論文 参考訳(メタデータ) (2021-10-06T13:14:44Z) - Explicit Pairwise Factorized Graph Neural Network for Semi-Supervised
Node Classification [59.06717774425588]
本稿では,グラフ全体を部分的に観測されたマルコフ確率場としてモデル化するEPFGNN(Explicit Pairwise Factorized Graph Neural Network)を提案する。
出力-出力関係をモデル化するための明示的なペアワイズ要素を含み、入力-出力関係をモデル化するためにGNNバックボーンを使用する。
本研究では,グラフ上での半教師付きノード分類の性能を効果的に向上できることを示す。
論文 参考訳(メタデータ) (2021-07-27T19:47:53Z) - Learning Graphs from Smooth Signals under Moment Uncertainty [23.868075779606425]
与えられたグラフ信号の集合からグラフ構造を推測する問題を検討する。
従来のグラフ学習モデルは、この分布の不確実性を考慮していない。
論文 参考訳(メタデータ) (2021-05-12T06:47:34Z) - Multilayer Clustered Graph Learning [66.94201299553336]
我々は、観測された層を代表グラフに適切に集約するために、データ忠実度用語として対照的な損失を用いる。
実験により,本手法がクラスタクラスタw.r.tに繋がることが示された。
クラスタリング問題を解くためのクラスタリングアルゴリズムを学習する。
論文 参考訳(メタデータ) (2020-10-29T09:58:02Z) - Line Graph Neural Networks for Link Prediction [71.00689542259052]
実世界の多くのアプリケーションにおいて古典的なグラフ解析問題であるグラフリンク予測タスクについて検討する。
このフォーマリズムでは、リンク予測問題をグラフ分類タスクに変換する。
本稿では,線グラフをグラフ理論に用いて,根本的に異なる新しい経路を求めることを提案する。
特に、線グラフの各ノードは、元のグラフのユニークなエッジに対応するため、元のグラフのリンク予測問題は、グラフ分類タスクではなく、対応する線グラフのノード分類問題として等価に解決できる。
論文 参考訳(メタデータ) (2020-10-20T05:54:31Z) - Semiparametric Nonlinear Bipartite Graph Representation Learning with
Provable Guarantees [106.91654068632882]
半パラメトリック指数族分布におけるパラメータの統計的推定問題として、両部グラフを考察し、その表現学習問題を定式化する。
提案手法は, 地中真理付近で強い凸性を示すため, 勾配降下法が線形収束率を達成できることを示す。
我々の推定器は指数族内の任意のモデル誤特定に対して頑健であり、広範な実験で検証されている。
論文 参考訳(メタデータ) (2020-03-02T16:40:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。