論文の概要: Evidence for Super-Polynomial Advantage of QAOA over Unstructured Search
- arxiv url: http://arxiv.org/abs/2202.00648v2
- Date: Fri, 4 Feb 2022 19:03:50 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-27 03:08:45.304307
- Title: Evidence for Super-Polynomial Advantage of QAOA over Unstructured Search
- Title(参考訳): 非構造探索によるQAOAの超多項式アドバンテージの証明
- Authors: John Golden, Andreas B\"artschi, Stephan Eidenbenz, Daniel O'Malley
- Abstract要約: 我々は,Clique,Ring,Groverミキサーおよび従来の客観的値としきい値に基づく位相分離器について検討した。
これらのQAOA変動のうちの1つ、目的値位相分離器を備えたCliquemixerは、Groverスタイルの非構造探索よりも優れていることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We compare the performance of several variations of the Quantum Alternating
Operator Ansatz (QAOA) on constrained optimization problems. Specifically, we
study the Clique, Ring, and Grover mixers as well as the traditional objective
value and recently introduced threshold-based phase separators. These are
studied through numerical simulation on k-Densest Subgraph, Maximum k-Vertex
Cover, and Maximum Bisection problems of size up to n=18 on Erd\"os-Renyi
graphs. We show that only one of these QAOA variations, the Clique mixer with
objective value phase separator, outperforms Grover-style unstructured search,
with a potentially super-polynomial advantage.
- Abstract(参考訳): 制約付き最適化問題に対する量子交互演算子Ansatz (QAOA) の各種特性の比較を行った。
具体的には,Clique,Ring,Groverミキサーおよび従来の目的値について検討し,近年では閾値に基づく位相分離器を導入している。
これらは, erd\"os-renyiグラフ上のk-密度部分グラフ, 最大k-vertex被覆, n=18までの最大二分割問題に関する数値シミュレーションによって研究されている。
これらのQAOA変種のうち、Cliquemixerは目的値位相分離器であり、Groverスタイルの非構造探索よりも優れており、スーパーポリノミカルな利点がある可能性がある。
関連論文リスト
- MG-Net: Learn to Customize QAOA with Circuit Depth Awareness [51.78425545377329]
量子近似最適化アルゴリズム(QAOA)とその変種は、最適化問題に対処する大きな可能性を示している。
良好な性能を実現するために必要な回路深度は問題固有であり、しばしば現在の量子デバイスの最大容量を超える。
ミキサジェネレータネットワーク (MG-Net) は, 最適ミキサハミルトニアンを動的に定式化するための統合ディープラーニングフレームワークである。
論文 参考訳(メタデータ) (2024-09-27T12:28:18Z) - Connecting the Hamiltonian structure to the QAOA performance and energy landscape [0.0]
量子交互演算子 Ansatz (QAOA) は2次非制約二項最適化問題の解法に有効である。
本研究は,短期量子デバイスにおけるアルゴリズムの堅牢性と最適化タスクの可能性を強調する。
論文 参考訳(メタデータ) (2024-07-05T11:32:46Z) - Performance Upper Bound of Grover-Mixer Quantum Alternating Operator Ansatz [3.5023108034606256]
QAOA(Quantum Alternating Operator Ansatz)は最適化問題を解くための量子アルゴリズムの一分野である。
特定の変種であるGrover-Mixer Quantum Alternating Operator Ansatz (GM-QAOA)は、等価な目的値を共有する状態間で均一な振幅を保証する。
GM-QAOAはサンプリング確率を2次的に向上させ,一貫した性能を維持するために,問題サイズと指数関数的にスケールする回路深度を必要とすることを示す。
論文 参考訳(メタデータ) (2024-05-06T05:47:27Z) - Lower Bounds on Number of QAOA Rounds Required for Guaranteed
Approximation Ratios [0.0]
量子交互作用素アンサッツ(QAOA)に必要なラウンド数に対する最初の下界のいくつかを提供する。
このタイプのQAOAは、ほとんどの問題に対して一定の近似比を保証するために少なくとも複数のラウンドを必要とすることを示す。
我々のフレームワークは、すべての局所的なコスト問題に自明な制約を与えます。
論文 参考訳(メタデータ) (2023-08-29T17:10:20Z) - QAOA-in-QAOA: solving large-scale MaxCut problems on small quantum
machines [81.4597482536073]
量子近似最適化アルゴリズム(QAOAs)は、量子マシンのパワーを利用し、断熱進化の精神を継承する。
量子マシンを用いて任意の大規模MaxCut問題を解くためにQAOA-in-QAOA(textQAOA2$)を提案する。
提案手法は,大規模最適化問題におけるQAOAsの能力を高めるために,他の高度な戦略にシームレスに組み込むことができる。
論文 参考訳(メタデータ) (2022-05-24T03:49:10Z) - General Hamiltonian Representation of ML Detection Relying on the
Quantum Approximate Optimization Algorithm [74.6114458993128]
最適化問題を解くために考案された量子近似最適化アルゴリズム(QAOA)は、既存のノイズのある中間スケール量子(NISQ)デバイス上で実行することができる。
我々は、QAOAを適切に適応させることにより、一般星座の最大可能性(ML)検出問題を解く。
特に、M-ary Gray-mapped Quarature amplitude modulation (MQAM) 星座では、同相成分をコードする特定の量子ビットと二次成分をコードする量子ビットが、興味のある量子系において独立であることを示す。
論文 参考訳(メタデータ) (2022-04-11T14:11:24Z) - Scaling Quantum Approximate Optimization on Near-term Hardware [49.94954584453379]
我々は、様々なレベルの接続性を持つハードウェアアーキテクチャのための最適化回路により、期待されるリソース要求のスケーリングを定量化する。
問題の大きさと問題グラフの次数で指数関数的に増大する。
これらの問題は、ハードウェア接続性の向上や、より少ない回路層で高い性能を達成するQAOAの変更によって緩和される可能性がある。
論文 参考訳(メタデータ) (2022-01-06T21:02:30Z) - Mixer-Phaser Ans\"atze for Quantum Optimization with Hard Constraints [1.011960004698409]
パラメタライズド・サーキット・アンス・アットーを導入し,その性能を標準的な量子交互演算子・アンザッツ法と比較した数値実験の結果を示す。
アンスアッツはQAOAの混合と相分離にインスパイアされ、また高温超伝導量子プロセッサ上での動作を目的としたコンパイルの考慮によって動機付けられる。
論文 参考訳(メタデータ) (2021-07-13T04:50:56Z) - Quantum Approximate Optimization Algorithm Based Maximum Likelihood
Detection [80.28858481461418]
量子技術の最近の進歩は、ノイズの多い中間スケール量子(NISQ)デバイスへの道を開く。
量子技術の最近の進歩は、ノイズの多い中間スケール量子(NISQ)デバイスへの道を開く。
論文 参考訳(メタデータ) (2021-07-11T10:56:24Z) - Solving correlation clustering with QAOA and a Rydberg qudit system: a
full-stack approach [94.37521840642141]
量子近似最適化アルゴリズム(QAOA)とクォーディットを用いた相関クラスタリング問題について検討する。
具体的には、中性原子量子コンピュータを検討し、相関クラスタリングのためのフルスタックアプローチを提案する。
ゲート数によって定量化されるように、quditの実装はqubitエンコーディングよりも優れていることを示す。
論文 参考訳(メタデータ) (2021-06-22T11:07:38Z) - Empirical performance bounds for quantum approximate optimization [0.27998963147546135]
パフォーマンスバウンダリの定量化は、QAOAが現実のアプリケーションの解決に有効である可能性についての洞察を提供する。
QAOA は、ほとんどのグラフに対して有界な Goemans-Williamson 近似比を超える。
得られたデータセットは、QAOAパフォーマンスに関する経験的バウンダリを確立するためのベンチマークとして提示される。
論文 参考訳(メタデータ) (2021-02-12T23:12:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。