論文の概要: Connecting the Hamiltonian structure to the QAOA performance and energy landscape
- arxiv url: http://arxiv.org/abs/2407.04435v1
- Date: Fri, 5 Jul 2024 11:32:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-08 13:40:23.415864
- Title: Connecting the Hamiltonian structure to the QAOA performance and energy landscape
- Title(参考訳): ハミルトン構造とQAOA性能とエネルギー景観をつなぐ
- Authors: Daniel Müssig, Markus Wappler, Steve Lenk, Jörg Lässig,
- Abstract要約: 量子交互演算子 Ansatz (QAOA) は2次非制約二項最適化問題の解法に有効である。
本研究は,短期量子デバイスにおけるアルゴリズムの堅牢性と最適化タスクの可能性を強調する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Quantum computing holds promise for outperforming classical computing in specialized applications such as optimization. With current Noisy Intermediate Scale Quantum (NISQ) devices, only variational quantum algorithms like the Quantum Alternating Operator Ansatz (QAOA) can be practically run. QAOA is effective for solving Quadratic Unconstrained Binary Optimization (QUBO) problems by approximating Quantum Annealing via Trotterization. Successful implementation on NISQ devices requires shallow circuits, influenced by the number of variables and the sparsity of the augmented interaction matrix. This paper investigates the necessary sparsity levels for augmented interaction matrices to ensure solvability with QAOA. By analyzing the Max-Cut problem with varying sparsity, we provide insights into how the Hamiltonian density affects the QAOA performance. Our findings highlight that, while denser matrices complicate the energy landscape, the performance of QAOA remains largely unaffected by sparsity variations. This study emphasizes the algorithm's robustness and potential for optimization tasks on near-term quantum devices, suggesting avenues for future research in enhancing QAOA for practical applications.
- Abstract(参考訳): 量子コンピューティングは、最適化のような特殊なアプリケーションにおいて、古典的コンピューティングを上回ることを約束している。
現在のノイズ中間スケール量子(NISQ)デバイスでは、量子交互演算子Ansatz(QAOA)のような変分量子アルゴリズムのみが実行可能である。
QAOAは、トロタライズによる量子アニーリングを近似することにより、二次非拘束バイナリ最適化(QUBO)問題を解決するのに有効である。
NISQデバイスの実装は、変数の数と拡張相互作用行列の空間性の影響を受け、浅い回路を必要とする。
本稿では,QAOAの可溶性を確保するために,拡張相互作用行列に必要な疎度レベルについて検討する。
種々の間隔でマックス・カット問題を解析することにより、ハミルトン密度がQAOA性能にどのように影響するかを洞察する。
より高密度な行列はエネルギー景観を複雑にするが,QAOAの性能は空間変動の影響を受けていないことが示唆された。
本研究は、短期量子デバイスにおけるアルゴリズムの堅牢性と最適化タスクの可能性を強調し、実用化に向けたQAOAの強化に向けた今後の研究の道のりを示唆する。
関連論文リスト
- Approximating under the Influence of Quantum Noise and Compute Power [3.0302054726041017]
量子近似最適化アルゴリズム(QAOA)は、量子コンピュータのパワーと古典的な高性能コンピューティングアプライアンスを組み合わせて最適化することを目的とした多くのシナリオの中核である。
総合密度行列に基づくシミュレーションを用いて, 4種類のQAOA変異体の解の質と時間的挙動に影響を与える因子について検討した。
本研究の結果は, 包括的複製パッケージを伴い, 狭小かつ特異な影響を指摘できるQAOA変異体との違いが強く認められた。
論文 参考訳(メタデータ) (2024-08-05T07:48:49Z) - Quantum Approximate Optimization: A Computational Intelligence Perspective [1.756184965281354]
量子コンピューティングと変分量子アルゴリズム(VQA)を紹介する。
Farhiらによる量子近似最適化アルゴリズム(FarhiのQAOA)について説明する。
計算学習理論や遺伝的アルゴリズムなど,関連分野へのQAOAの関連性について論じる。
論文 参考訳(メタデータ) (2024-07-09T19:40:23Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
変分量子アルゴリズム(VQA)は、最適化と機械学習問題を解決するための有望な量子代替手段として登場した。
本稿では,回路設計が2つの分類問題に対して得られる性能に与える影響を実験的に示す。
また、実量子コンピュータのシミュレーションにおいて、ノイズの存在下で得られた回路の劣化について検討する。
論文 参考訳(メタデータ) (2024-04-17T11:00:12Z) - A joint optimization approach of parameterized quantum circuits with a
tensor network [0.0]
現在の中間スケール量子(NISQ)デバイスはその能力に制限がある。
本稿では,パラメータ化ネットワーク(TN)を用いて,変分量子固有解法(VQE)アルゴリズムの性能改善を試みる。
論文 参考訳(メタデータ) (2024-02-19T12:53:52Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
マルチオブジェクト追跡(MOT)は、オブジェクト検出が時間を通して関連付けられているトラッキング・バイ・検出のパラダイムにおいて、最もよくアプローチされる。
これらの最適化問題はNPハードであるため、現在のハードウェア上の小さなインスタンスに対してのみ正確に解決できる。
本手法は,既成整数計画法を用いても,最先端の最適化手法と競合することを示す。
論文 参考訳(メタデータ) (2022-02-17T18:59:20Z) - Scaling Quantum Approximate Optimization on Near-term Hardware [49.94954584453379]
我々は、様々なレベルの接続性を持つハードウェアアーキテクチャのための最適化回路により、期待されるリソース要求のスケーリングを定量化する。
問題の大きさと問題グラフの次数で指数関数的に増大する。
これらの問題は、ハードウェア接続性の向上や、より少ない回路層で高い性能を達成するQAOAの変更によって緩和される可能性がある。
論文 参考訳(メタデータ) (2022-01-06T21:02:30Z) - Quantum circuit architecture search on a superconducting processor [56.04169357427682]
変分量子アルゴリズム(VQA)は、ファイナンス、機械学習、化学といった様々な分野において、証明可能な計算上の優位性を得るための強力な証拠を示している。
しかし、現代のVQAで利用されるアンザッツは、表現性と訓練性の間のトレードオフのバランスをとることができない。
8量子ビット超伝導量子プロセッサ上でVQAを強化するために,効率的な自動アンサッツ設計技術を適用した最初の実証実験を実証する。
論文 参考訳(メタデータ) (2022-01-04T01:53:42Z) - Efficient Classical Computation of Quantum Mean Values for Shallow QAOA
Circuits [15.279642278652654]
浅いQAOA回路の量子ビット数と線形にスケールするグラフ分解に基づく古典的アルゴリズムを提案する。
我々の結果は、QAOAによる量子アドバンテージの探索だけでなく、NISQプロセッサのベンチマークにも有用である。
論文 参考訳(メタデータ) (2021-12-21T12:41:31Z) - Quantum Approximate Optimization Algorithm applied to the binary
perceptron [0.46664938579243564]
本稿では,量子アニーリング(QA)と量子近似最適化アルゴリズム(QAOA)を,ニューラルネットワークにおける教師あり学習のパラダイムタスクに適用する。
我々はQAOAパラメータに対する最適滑らかな解の存在を証明し、同じ問題の典型例間で伝達可能であることを示す。
従来のQAよりもQAOAの性能が向上したことを示す。
論文 参考訳(メタデータ) (2021-12-19T18:33:22Z) - Quantum Approximate Optimization Algorithm Based Maximum Likelihood
Detection [80.28858481461418]
量子技術の最近の進歩は、ノイズの多い中間スケール量子(NISQ)デバイスへの道を開く。
量子技術の最近の進歩は、ノイズの多い中間スケール量子(NISQ)デバイスへの道を開く。
論文 参考訳(メタデータ) (2021-07-11T10:56:24Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
本稿では、QAS(Quantum Architecture Search)と呼ばれるリソースと実行時の効率的なスキームを提案する。
QASは、よりノイズの多い量子ゲートを追加することで得られる利点と副作用のバランスをとるために、自動的にほぼ最適アンサッツを求める。
数値シミュレータと実量子ハードウェアの両方に、IBMクラウドを介してQASを実装し、データ分類と量子化学タスクを実現する。
論文 参考訳(メタデータ) (2020-10-20T12:06:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。