An architecture for quantum networking of neutral atom processors
- URL: http://arxiv.org/abs/2202.01634v3
- Date: Mon, 20 Jun 2022 03:07:37 GMT
- Title: An architecture for quantum networking of neutral atom processors
- Authors: C. B. Young, A. Safari, P. Huft, J. Zhang, E. Oh, R. Chinnarasu, and
M. Saffman
- Abstract summary: Development of a network for remote entanglement of quantum processors is an outstanding challenge in quantum information science.
We propose and analyze a two-species architecture for remote entanglement of neutral atom quantum computers based on integration of optically trapped atomic qubit arrays with fast optics for photon collection.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Development of a network for remote entanglement of quantum processors is an
outstanding challenge in quantum information science. We propose and analyze a
two-species architecture for remote entanglement of neutral atom quantum
computers based on integration of optically trapped atomic qubit arrays with
fast optics for photon collection. One of the atomic species is used for
atom-photon entanglement, and the other species provides local processing. We
compare the achievable rates of remote entanglement generation for two optical
approaches: free space photon collection with a lens and a near-concentric,
long working distance resonant cavity. Laser cooling and trapping within the
cavity removes the need for mechanical transport of atoms from a source region,
which allows for a fast repetition rate. Using optimized values of the cavity
finesse, remote entanglement generation rates $> 10^3~\rm s^{-1}$ are predicted
for experimentally feasible parameters.
Related papers
- A quantum-network register assembled with optical tweezers in an optical cavity [0.0]
Quantum computation and quantum communication are expected to provide users with capabilities inaccessible by classical physics.
One solution is to develop a quantum network consisting of small-scale quantum registers containing computation qubits.
We report on a register that uses both optical tweezers and optical lattices to deterministically assemble a two-dimensional array of atoms in an optical cavity.
arXiv Detail & Related papers (2024-07-12T09:20:57Z) - High-rate and high-fidelity modular interconnects between neutral atom
quantum processors [0.0]
We propose an experimental protocol for generating entanglement between neutral ytterbium atom qubits using an optical cavity.
A twisted ring cavity geometry suppresses many sources of error, allowing high fidelity entanglement generation.
We estimate a spin-photon entanglement rate of $5 times 105$ s$-1$, and a Bell pair rate of $1.0times 105$ s$-1$, with an average fidelity near $0.999$.
arXiv Detail & Related papers (2024-01-08T18:26:19Z) - QUICK$^3$ -- Design of a satellite-based quantum light source for
quantum communication and extended physical theory tests in space [73.86330563258117]
Single photon source can enhance secure data rates in satellite-based quantum key distribution scenarios.
payload is being integrated into a 3U CubeSat and scheduled for launch in 2024 into low Earth orbit.
arXiv Detail & Related papers (2023-01-26T15:34:11Z) - Simulation of Entanglement Generation between Absorptive Quantum
Memories [56.24769206561207]
We use the open-source Simulator of QUantum Network Communication (SeQUeNCe), developed by our team, to simulate entanglement generation between two atomic frequency comb (AFC) absorptive quantum memories.
We realize the representation of photonic quantum states within truncated Fock spaces in SeQUeNCe.
We observe varying fidelity with SPDC source mean photon number, and varying entanglement generation rate with both mean photon number and memory mode number.
arXiv Detail & Related papers (2022-12-17T05:51:17Z) - High-speed thin-film lithium niobate quantum processor driven by a
solid-state quantum emitter [2.308881946683637]
We develop an integrated photonic platform based on thin-film lithium niobate.
We interface it with deterministic solid-state single-photon sources based on quantum dots in nanophotonic waveguides.
We realize a variety of key photonic quantum information processing functionalities with the high-speed circuits.
arXiv Detail & Related papers (2022-11-10T17:15:08Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Entanglement transport and a nanophotonic interface for atoms in optical
tweezers [0.28106259549258145]
We demonstrate entanglement generation, fast non-destructive readout, and full quantum control of atomic qubits.
Our approach bridges quantum operations at an optical link and in free space with a coherent one-way transport, potentially enabling an integrated optical interface for atomic quantum processors.
arXiv Detail & Related papers (2021-05-13T18:00:24Z) - Telecom-heralded entanglement between remote multimode solid-state
quantum memories [55.41644538483948]
Future quantum networks will enable the distribution of entanglement between distant locations and allow applications in quantum communication, quantum sensing and distributed quantum computation.
Here we report the demonstration of heralded entanglement between two spatially separated quantum nodes, where the entanglement is stored in multimode solid-state quantum memories.
We also show that the generated entanglement is robust against loss in the heralding path, and demonstrate temporally multiplexed operation, with 62 temporal modes.
arXiv Detail & Related papers (2021-01-13T14:31:54Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z) - Nanophotonic quantum network node with neutral atoms and an integrated
telecom interface [0.38233569758620056]
We propose a quantum network node based on neutral alkali atoms coupled to nanophotonic crystal cavities.
We present a novel protocol for the generation of an atom-photon entangled state.
We find that a high fidelity entangled state can be generated with current technologies.
arXiv Detail & Related papers (2020-02-12T19:01:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.