論文の概要: Log-Euclidean Signatures for Intrinsic Distances Between Unaligned
Datasets
- arxiv url: http://arxiv.org/abs/2202.01671v1
- Date: Thu, 3 Feb 2022 16:37:23 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-04 17:08:54.101910
- Title: Log-Euclidean Signatures for Intrinsic Distances Between Unaligned
Datasets
- Title(参考訳): 非整合データセット間の固有距離に対するlog-euclideanシグネチャ
- Authors: Tal Shnitzer, Mikhail Yurochkin, Kristjan Greenewald and Justin
Solomon
- Abstract要約: 我々は、多様体学習を用いて、異なるデータセットの固有幾何学構造を比較する。
対数ユークリッド計量の下限に基づいて、理論上動機付けられた新しい距離を定義する。
- 参考スコア(独自算出の注目度): 47.20862716252927
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The need for efficiently comparing and representing datasets with unknown
alignment spans various fields, from model analysis and comparison in machine
learning to trend discovery in collections of medical datasets. We use manifold
learning to compare the intrinsic geometric structures of different datasets by
comparing their diffusion operators, symmetric positive-definite (SPD) matrices
that relate to approximations of the continuous Laplace-Beltrami operator from
discrete samples. Existing methods typically compare such operators in a
pointwise manner or assume known data alignment. Instead, we exploit the
Riemannian geometry of SPD matrices to compare these operators and define a new
theoretically-motivated distance based on a lower bound of the log-Euclidean
metric. Our framework facilitates comparison of data manifolds expressed in
datasets with different sizes, numbers of features, and measurement modalities.
Our log-Euclidean signature (LES) distance recovers meaningful structural
differences, outperforming competing methods in various application domains.
- Abstract(参考訳): 未知のアライメントによるデータセットの効率的な比較と表現の必要性は、モデル分析から機械学習の比較、医療データセットの集合におけるトレンド発見まで、さまざまな分野にまたがる。
離散サンプルから連続ラプラス・ベルトラミ作用素を近似した対称正定値行列(SPD)を比較して、異なるデータセットの固有幾何構造を比較するために多様体学習を用いる。
既存の手法は通常、そのような演算子を点的に比較したり、既知のデータアライメントを仮定する。
代わりに、SPD行列のリーマン幾何学を利用してこれらの作用素を比較し、対数ユークリッド計量の下界に基づいて新たな理論上の動機付けられた距離を定義する。
本フレームワークは,異なるサイズ,特徴数,測定モダリティを持つデータセットで表現されるデータ多様体の比較を容易にする。
当社のlog-euclidean signature(les)距離は有意義な構造的差異を回復し、さまざまなアプリケーションドメインにおける競合メソッドを上回っています。
関連論文リスト
- Measuring similarity between embedding spaces using induced neighborhood graphs [10.056989400384772]
本稿では,ペアの項目表現の類似性を評価するための指標を提案する。
この結果から,類似度とゼロショット分類タスクの精度が類似度と相関していることが示唆された。
論文 参考訳(メタデータ) (2024-11-13T15:22:33Z) - Symmetry Discovery for Different Data Types [52.2614860099811]
等価ニューラルネットワークは、そのアーキテクチャに対称性を取り入れ、より高度な一般化性能を実現する。
本稿では,タスクの入出力マッピングを近似したトレーニングニューラルネットワークによる対称性発見手法であるLieSDを提案する。
我々は,2体問題,慣性行列予測のモーメント,トップクォークタグ付けといった課題におけるLieSDの性能を検証した。
論文 参考訳(メタデータ) (2024-10-13T13:39:39Z) - Induced Covariance for Causal Discovery in Linear Sparse Structures [55.2480439325792]
因果モデルでは、観測データから変数間の因果関係を解き明かそうとしている。
本稿では,変数が線形に疎結合な関係を示す設定のための新しい因果探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-02T04:01:38Z) - Entropic Optimal Transport Eigenmaps for Nonlinear Alignment and Joint Embedding of High-Dimensional Datasets [11.105392318582677]
本稿では,理論的保証付きデータセットの整列と共同埋め込みの原理的アプローチを提案する。
提案手法は,2つのデータセット間のEOT計画行列の先頭特異ベクトルを利用して,それらの共通基盤構造を抽出する。
EOT計画では,高次元状態において,潜伏変数の位置で評価されたカーネル関数を近似することにより,共有多様体構造を復元する。
論文 参考訳(メタデータ) (2024-07-01T18:48:55Z) - Kernel distance measures for time series, random fields and other
structured data [71.61147615789537]
kdiffは、構造化データのインスタンス間の距離を推定するためのカーネルベースの新しい尺度である。
これはインスタンス間の自己類似性と交差類似性の両方を考慮し、距離分布の低い定量値を用いて定義される。
kdiffをクラスタリングと分類問題のための距離尺度として用いた分離性条件について,いくつかの理論的結果が得られた。
論文 参考訳(メタデータ) (2021-09-29T22:54:17Z) - A Differential Geometry Perspective on Orthogonal Recurrent Models [56.09491978954866]
我々は微分幾何学からのツールと洞察を用いて、直交rnnの新しい視点を提供する。
直交RNNは、発散自由ベクトル場の空間における最適化と見なすことができる。
この観測に動機づけられて、ベクトル場全体の空間にまたがる新しいリカレントモデルの研究を行う。
論文 参考訳(メタデータ) (2021-02-18T19:39:22Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
[1]では、ランダムに投影された線形判別式のアンサンブルを用いてデータセットを分類する。
我々は,計算コストのかかるクロスバリデーション推定器の代替として,誤分類確率の一貫した推定器を開発する。
また、実データと合成データの両方で投影次元を調整するための推定器の使用を実証する。
論文 参考訳(メタデータ) (2020-04-17T12:47:04Z) - Learning Similarity Metrics for Numerical Simulations [29.39625644221578]
本稿では,様々な数値シミュレーションソースから得られるデータを比較するため,安定かつ一般化された指標(LSiM)をニューラルネットワークで計算する手法を提案する。
提案手法は,計量の数学的性質を動機としたシームズネットワークアーキテクチャを用いている。
論文 参考訳(メタデータ) (2020-02-18T20:11:15Z) - Learning Flat Latent Manifolds with VAEs [16.725880610265378]
本稿では、ユークリッド計量がデータポイント間の類似性のプロキシとなる変分自動エンコーダのフレームワークの拡張を提案する。
我々は、変分オートエンコーダで一般的に使用されるコンパクトな以前のものを、最近発表されたより表現力のある階層型に置き換える。
提案手法は,ビデオ追跡ベンチマークを含む,さまざまなデータセットを用いて評価する。
論文 参考訳(メタデータ) (2020-02-12T09:54:52Z) - Geometric Dataset Distances via Optimal Transport [15.153110906331733]
本稿では, (i) モデルに依存しない, (ii) トレーニングを伴わない, (iii) ラベル集合が完全に不連結であり, (iv) 理論的な足場が固い場合でも, データセットを比較できる,という,データセット間の距離の代替概念を提案する。
この距離は最適な輸送に依存しており、リッチな幾何学的認識、解釈可能な対応およびよく理解された性質を提供する。
以上の結果から,この新たな距離は,データセットの有意義な比較を提供し,様々な実験環境やデータセット間での伝達学習困難度と相関関係があることが示唆された。
論文 参考訳(メタデータ) (2020-02-07T17:51:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。