A framework for nonrelativistic isotropic models based on generalized
uncertainty principles
- URL: http://arxiv.org/abs/2202.02044v3
- Date: Thu, 2 Feb 2023 11:26:22 GMT
- Title: A framework for nonrelativistic isotropic models based on generalized
uncertainty principles
- Authors: Andre H. Gomes
- Abstract summary: We show simple dimensional analysis allows for building a unified framework containing any isotropic generalized uncertainty principle (iGUP)
At last, we translate current bounds on three often investigated GUP models into bounds on parameters of such unified iGUP framework.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The existence of a fundamental length scale in Nature is a common prediction
of distinct quantum gravity models. Discovery of such would profoundly change
current knowledge of quantum phenomena and modifications to the Heisenberg
uncertainty principle may be expected. Despite the attention given to this
possibility in the past decades, there has been no common framework for a
systematic investigation of so called generalized uncertainty principles (GUP).
In this work we provide such framework in the context of nonrelativistic
quantum mechanics. Our approach is based on very few assumptions: there is a
fundamental length scale, space isotropy, invariance under parity and time
reversal transformations, and symmetricity of the position and momentum
operators. We show simple dimensional analysis allows for building a unified
framework containing any isotropic generalized uncertainty principle (iGUP) and
discuss some popular GUP models in this context after elaborating on relevant
theoretical aspects of the framework. At last, we translate current bounds on
three often investigated GUP models into bounds on parameters of such unified
iGUP framework.
Related papers
- Towards Relational Quantum Field Theory [0.0]
We develop a general integration theory for operator-valued functions (quantum fields) with respect to positive operator-valued measures (quantum frames)
A form of indefinitetemporality arises from quantum states in the context of relational frame bundles.
This offers novel perspectives on the problem of reconciling principles of generally relativistic and quantum physics.
arXiv Detail & Related papers (2024-05-24T11:31:27Z) - Relaxation of first-class constraints and the quantization of gauge theories: from "matter without matter" to the reappearance of time in quantum gravity [72.27323884094953]
We make a conceptual overview of an approach to the initial-value problem in canonical gauge theories.
We stress how the first-class phase-space constraints may be relaxed if we interpret them as fixing the values of new degrees of freedom.
arXiv Detail & Related papers (2024-02-19T19:00:02Z) - A Measure-Theoretic Axiomatisation of Causality [55.6970314129444]
We argue in favour of taking Kolmogorov's measure-theoretic axiomatisation of probability as the starting point towards an axiomatisation of causality.
Our proposed framework is rigorously grounded in measure theory, but it also sheds light on long-standing limitations of existing frameworks.
arXiv Detail & Related papers (2023-05-19T13:15:48Z) - Decoherence limit of quantum systems obeying generalized uncertainty
principle: new paradigm for Tsallis thermostatistics [0.0]
We study possible observational effects of generalized uncertainty principle (GUP) systems in their decoherence domain.
We invoke the Maximal Entropy principle known from estimation theory to reveal connection between the quasi-classical (decoherence) limit of GUP-related quantum theory and non-extensive thermostatistics of Tsallis.
arXiv Detail & Related papers (2022-01-19T23:37:05Z) - Generalised Uncertainty Relations and the Problem of Dark Energy [0.0]
We outline a new model in which generalised uncertainty relations, that govern the behaviour of microscopic world, and dark energy, are intrinsically linked via the quantum properties of space-time.
In this approach the background is treated as a genuinely quantum object, with an associated state vector, and additional fluctuations of the geometry naturally give rise to the extended generalised uncertainty principle (EGUP)
An effective dark energy density then emerges from the field that minimises the modified uncertainty relations.
arXiv Detail & Related papers (2021-12-27T23:36:16Z) - Non-standard entanglement structure of local unitary self-dual models as
a saturated situation of repeatability in general probabilistic theories [61.12008553173672]
We show the existence of infinite structures of quantum composite system such that it is self-dual with local unitary symmetry.
We also show the existence of a structure of quantum composite system such that non-orthogonal states in the structure are perfectly distinguishable.
arXiv Detail & Related papers (2021-11-29T23:37:58Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - Self-adjointness in Quantum Mechanics: a pedagogical path [77.34726150561087]
This paper aims to make quantum observables emerge as necessarily self-adjoint, and not merely hermitian operators.
Next to the central core of our line of reasoning, the necessity of a non-trivial declaration of a domain to associate with the formal action of an observable.
arXiv Detail & Related papers (2020-12-28T21:19:33Z) - Nonlinear Schr\"odinger equations and generalized Heisenberg uncertainty
principle violating the principle of estimation independence [0.0]
We discuss possible extensions of quantum mechanics based on an operational scheme of estimation of momentum given positions.
Within the estimation scheme, the canonical quantum laws are reconstructed for a specific estimator and estimation error.
We argue that a broad class of nonlinearities and deviations from Heisenberg uncertainty principle arise from estimation errors.
arXiv Detail & Related papers (2020-09-11T13:27:40Z) - Estimation independence as an axiom for quantum uncertainty [0.0]
We show that a plausible principle of estimation independence, which requires that the estimation of momentum of one system must be independent of the position of another system, singles out the specific forms of the estimator.
arXiv Detail & Related papers (2020-05-12T07:12:17Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.