論文の概要: Region-specific Risk Quantification for Interpretable Prognosis of COVID-19
- arxiv url: http://arxiv.org/abs/2405.02815v1
- Date: Sun, 5 May 2024 05:08:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-07 18:10:30.097385
- Title: Region-specific Risk Quantification for Interpretable Prognosis of COVID-19
- Title(参考訳): 新型コロナウイルスの解釈可能な予後の地域別リスク定量化
- Authors: Zhusi Zhong, Jie Li, Zhuoqi Ma, Scott Collins, Harrison Bai, Paul Zhang, Terrance Healey, Xinbo Gao, Michael K. Atalay, Zhicheng Jiao,
- Abstract要約: 新型コロナウイルス(COVID-19)のパンデミックは、世界的な公衆衛生を悪化させ、正確な診断と疾病対策の介入を必要とし、死亡率を下げている。
胸部X線画像(CXR)を用いて、新型コロナウイルスの予後に対する理解と信頼の向上を目的とした、解釈可能な深層生存予測モデルを提案する。
- 参考スコア(独自算出の注目度): 36.731054010197035
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The COVID-19 pandemic has strained global public health, necessitating accurate diagnosis and intervention to control disease spread and reduce mortality rates. This paper introduces an interpretable deep survival prediction model designed specifically for improved understanding and trust in COVID-19 prognosis using chest X-ray (CXR) images. By integrating a large-scale pretrained image encoder, Risk-specific Grad-CAM, and anatomical region detection techniques, our approach produces regional interpretable outcomes that effectively capture essential disease features while focusing on rare but critical abnormal regions. Our model's predictive results provide enhanced clarity and transparency through risk area localization, enabling clinicians to make informed decisions regarding COVID-19 diagnosis with better understanding of prognostic insights. We evaluate the proposed method on a multi-center survival dataset and demonstrate its effectiveness via quantitative and qualitative assessments, achieving superior C-indexes (0.764 and 0.727) and time-dependent AUCs (0.799 and 0.691). These results suggest that our explainable deep survival prediction model surpasses traditional survival analysis methods in risk prediction, improving interpretability for clinical decision making and enhancing AI system trustworthiness.
- Abstract(参考訳): 新型コロナウイルス(COVID-19)のパンデミックは、世界的な公衆衛生を悪化させ、正確な診断と疾病対策の介入を必要とし、死亡率を下げている。
胸部X線画像(CXR)を用いて、新型コロナウイルスの予後に対する理解と信頼の向上を目的とした、解釈可能な深層生存予測モデルを提案する。
大規模な事前訓練画像エンコーダ,リスク特異的なGrad-CAM,および解剖学的領域検出技術を統合することにより,本研究は,稀ながら致命的な異常領域に着目しながら,本態性疾患の特徴を効果的に捉えた地域解釈可能な結果を生み出す。
本モデルの予測結果は,リスク領域のローカライゼーションを通じて明瞭度と透明性を向上し,臨床医が予後の理解を深めながら,新型コロナウイルスの診断に関する情報的決定を下すことを可能にする。
提案手法をマルチセンターサバイバルデータセット上で評価し,その有効性を定量的および質的評価を用いて評価し,優れたCインデックス(0.764,0.727)と時間依存型AUC(0.799,0.691)を達成した。
これらの結果から,本モデルがリスク予測における従来の生存分析手法を超越し,臨床意思決定の解釈可能性の向上とAIシステムの信頼性向上を図っていることが示唆された。
関連論文リスト
- xCG: Explainable Cell Graphs for Survival Prediction in Non-Small Cell Lung Cancer [10.515405477496735]
生存予測のための説明可能なセルグラフ(xCG)を提案する。
肺腺癌416例に対する画像量(IMC)データの公開コホートによる検討を行った。
論文 参考訳(メタデータ) (2024-11-12T08:53:49Z) - SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
セプシスは米国での院内死亡の主な原因である。
既存の予測モデルは通常、情報不足の少ない高品質なデータで訓練される。
限られた観察により信頼性の低い高リスク患者に対して,ロバストな能動センシングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-07-24T04:47:36Z) - Deep Neural Decision Forest: A Novel Approach for Predicting Recovery or Decease of Patients [1.0874223087191939]
本研究の目的は,深層学習アルゴリズムが患者の道徳を予測できるかどうかを検討することである。
臨床およびRT-PCRがどちらが信頼性が高いかを予測するための予測に与える影響について検討した。
その結果, RT-PCRを用いない臨床単独が, 80%の精度で最も効果的な診断方法であることが示唆された。
論文 参考訳(メタデータ) (2023-11-23T11:21:40Z) - COVID-Net Biochem: An Explainability-driven Framework to Building
Machine Learning Models for Predicting Survival and Kidney Injury of COVID-19
Patients from Clinical and Biochemistry Data [66.43957431843324]
我々は、機械学習モデルを構築するための汎用的で説明可能なフレームワークであるCOVID-Net Biochemを紹介する。
この枠組みを用いて、新型コロナウイルス患者の生存率と、入院中に急性腎不全を発症する可能性を予測する。
論文 参考訳(メタデータ) (2022-04-24T07:38:37Z) - Interpretability methods of machine learning algorithms with
applications in breast cancer diagnosis [1.1470070927586016]
我々は,グローバルサロゲート(GS)法,個人期待(ICE)プロット,条件シェープ値(SV)などの解釈可能性技術を用いた。
乳がん診断における最良の成績は,提案したERN(精度96.6%,ROC曲線0.96)により得られた。
論文 参考訳(メタデータ) (2022-02-04T13:41:30Z) - Machine learning approach to dynamic risk modeling of mortality in
COVID-19: a UK Biobank study [0.0]
新型コロナウイルス(COVID-19)のパンデミックは、高リスク患者の階層化を支援する堅牢でスケーラブルなモニタリングツールを緊急に必要としてきた。
本研究は、英国バイオバンクを用いた予測モデルを開発し、検証し、新型コロナウイルスの死亡リスクを推定することを目的とする。
論文 参考訳(メタデータ) (2021-04-19T11:51:20Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
我々は,X線に基づく疾患分類のための新しい確率的推論フレームワークである反復的知識蒸留(VKD)を提案する。
提案手法の有効性を,X線画像とEHRを用いた3つの公開ベンチマークデータセットに示す。
論文 参考訳(メタデータ) (2021-03-19T14:13:56Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
臨床テキストからのアウトカム予測は、医師が潜在的なリスクを見落としないようにする。
退院時の診断,手術手順,院内死亡率,長期予測は4つの一般的な結果予測対象である。
複数の公開資料から得られた患者結果に関する知識を統合するために,臨床結果の事前学習を提案する。
論文 参考訳(メタデータ) (2021-02-08T10:26:44Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - Estimating Uncertainty and Interpretability in Deep Learning for
Coronavirus (COVID-19) Detection [0.0]
コンピュータベースの診断にどれだけの自信があるかを知ることは、臨床医にこの技術への信頼を得るのに不可欠である。
本稿では,減量重みに基づくベイズ畳み込みニューラルネットワーク(BCNN)を用いて,ディープラーニングソリューションにおける不確実性を推定する方法について検討する。
不確実性を認識したディープラーニングソリューションが利用できることで、臨床環境でのAI(Artificial Intelligence)の広範な採用が可能になると考えています。
論文 参考訳(メタデータ) (2020-03-22T21:58:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。