Enhancing the Formation of Wigner Negativity in a Kerr Oscillator via
Quadrature Squeezing
- URL: http://arxiv.org/abs/2202.02285v1
- Date: Fri, 4 Feb 2022 18:17:22 GMT
- Title: Enhancing the Formation of Wigner Negativity in a Kerr Oscillator via
Quadrature Squeezing
- Authors: Christian Anker Rosiek
- Abstract summary: Motivated by quantum experiments with nanomechanical systems, the evolution of a Kerr oscillator with focus on creation of states with a Wigner function is investigated.
Using the phase space formalism, results are presented that demonstrate an negative behavior in the large squeezing regime for the negativity of a squeezed vacuum state under unitary evolution.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Motivated by quantum experiments with nanomechanical systems, the evolution
of a Kerr oscillator with focus on creation of states with a negative Wigner
function is investigated. Using the phase space formalism, results are
presented that demonstrate an asymptotic behavior in the large squeezing regime
for the negativity of a squeezed vacuum state under unitary evolution. The
analysis and model are extended to squeezed vacuum states of open systems,
adding the decoherence effects of damping and dephasing. To increase
experimental relevance, the regime of strong damping is considered. These
effects are investigated, yielding similar asymptotic results for the behavior
of these effects in the large squeezing regime. Combining these results, it is
shown that a weak nonlinearity as compared to damping may be improved by
increasing the squeezing of the initial state. It is also shown that this may
be done without exacerbating the effects of dephasing.
Related papers
- Nonequilibrium Nonlinear Effects and Dynamical Boson Condensation in a Driven-Dissipative Wannier-Stark Lattice [0.0]
Driven-dissipative light-matter systems can exhibit collective nonequilibrium phenomena due to loss and gain processes.
We numerically predict a diverse range of stationary and non-stationary states resulting from the interplay of the tilt, tunneling, on-site interactions and loss and gain processes.
arXiv Detail & Related papers (2024-04-29T12:28:52Z) - Quadrature squeezing enhances Wigner negativity in a mechanical Duffing
oscillator [0.0]
We propose to use a motional squeezed state as a resource to effectively enhance the anharmonicity of quantum systems.
We analyze the production of negativity in the Wigner distribution of a quantum anharmonic resonator initially in a squeezed state.
We provide an overview of several experimental platforms featuring nonlinear behaviors and low levels of decoherence.
arXiv Detail & Related papers (2023-12-20T12:44:35Z) - Decoherence Limits the Cost to Simulate an Anharmonic Oscillator [0.0]
We study how decoherence washes out the fine-grained subPlanck structure associated with phase-space quantum interference in a quantum system.
Open quantum dynamics can be more efficiently simulated using a coarse-grained finite-difference numerical integration.
We show that this regression does not have the form of a convex noise model, such as for a depolarizing noise channel.
arXiv Detail & Related papers (2023-07-03T04:49:10Z) - Steady-state edge burst: From free-particle systems to
interaction-induced phenomena [2.49649604985112]
We find that the interplay between the non-Hermitian skin effect and the imaginary gap of lossy lattices results in the edge burst.
We introduce a many-body open-system model in which the two-body loss generates an interaction-induced non-Hermitian skin effect.
Our predictions are testable in state-of-the-art experimental platforms.
arXiv Detail & Related papers (2023-06-14T18:00:03Z) - Observability of spontaneous collapse in flavor oscillations and its
relation to the CP and CPT symmetries [0.0]
Spontaneous collapse models aim at solving the measurement problem of quantum mechanics.
We study how the violation of the $mathcalCP$ symmetry in mixing changes the spontaneous collapse effect on flavor oscillations.
arXiv Detail & Related papers (2022-08-30T16:48:21Z) - Reminiscence of classical chaos in driven transmons [117.851325578242]
We show that even off-resonant drives can cause strong modifications to the structure of the transmon spectrum rendering a large part of it chaotic.
Results lead to a photon number threshold characterizing the appearance of chaos-induced quantum demolition effects.
arXiv Detail & Related papers (2022-07-19T16:04:46Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Quantum asymmetry and noisy multi-mode interferometry [55.41644538483948]
Quantum asymmetry is a physical resource which coincides with the amount of coherence between the eigenspaces of a generator.
We show that the asymmetry may emphincrease as a result of a emphdecrease of coherence inside a degenerate subspace.
arXiv Detail & Related papers (2021-07-23T07:30:57Z) - Efficient Causal Inference from Combined Observational and
Interventional Data through Causal Reductions [68.6505592770171]
Unobserved confounding is one of the main challenges when estimating causal effects.
We propose a novel causal reduction method that replaces an arbitrary number of possibly high-dimensional latent confounders.
We propose a learning algorithm to estimate the parameterized reduced model jointly from observational and interventional data.
arXiv Detail & Related papers (2021-03-08T14:29:07Z) - Direct phase modulation via optical injection: theoretical study [50.591267188664666]
We study the influence of the spontaneous emission noise, examine the role of the gain non-linearity and consider the effect of the temperature drift.
We have tried to formulate here practical instructions, which will help to take these features into account when elaborating and employing the optical-injection-based phase modulator.
arXiv Detail & Related papers (2020-11-18T13:20:04Z) - Subdiffusion via Disordered Quantum Walks [52.77024349608834]
We experimentally prove the feasibility of disordered quantum walks to realize a quantum simulator that is able to model general subdiffusive phenomena.
Our experiment simulates such phenomena by means of a finely controlled insertion of various levels of disorder during the evolution of the walker.
This allows us to explore the full range of subdiffusive behaviors, ranging from anomalous Anderson localization to normal diffusion.
arXiv Detail & Related papers (2020-07-24T13:56:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.