Decoherence Limits the Cost to Simulate an Anharmonic Oscillator
- URL: http://arxiv.org/abs/2307.00748v4
- Date: Fri, 9 Feb 2024 02:05:36 GMT
- Title: Decoherence Limits the Cost to Simulate an Anharmonic Oscillator
- Authors: Tzula B. Propp, Sayonee Ray, John B. DeBrota, Tameem Albash, and Ivan
Deutsch
- Abstract summary: We study how decoherence washes out the fine-grained subPlanck structure associated with phase-space quantum interference in a quantum system.
Open quantum dynamics can be more efficiently simulated using a coarse-grained finite-difference numerical integration.
We show that this regression does not have the form of a convex noise model, such as for a depolarizing noise channel.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study how decoherence increases the efficiency with which we can simulate
the quantum dynamics of an anharmonic oscillator, governed by the Kerr effect.
As decoherence washes out the fine-grained subPlanck structure associated with
phase-space quantum interference in the closed quantum system, open quantum
dynamics can be more efficiently simulated using a coarse-grained
finite-difference numerical integration. We tie this to the way in which
decoherence recovers the semiclassical truncated Wigner approximation (TWA),
which strongly differs from the exact closed-system dynamics at times when
quantum interference leads to cat states and more general superpositions of
coherent states. The regression in quadrature measurement statistics to
semiclassical dynamics becomes more pronounced as the initial amplitude of the
oscillator grows, with implications for the quantum advantage that might be
accessible as system size grows in noisy quantum devices. Lastly, we show that
this regression does not have the form of a convex noise model, such as for a
depolarizing noise channel. Instead, closed quantum system effects interact
with the open system effects, giving rise to distinct open system behavior.
Related papers
- Overhead-constrained circuit knitting for variational quantum dynamics [0.0]
We use circuit knitting to partition a large quantum system into smaller subsystems that can each be simulated on a separate device.
We show that the same method can be used to reduce the circuit depth by cutting long-ranged gates.
arXiv Detail & Related papers (2023-09-14T17:01:06Z) - Squeezing oscillations in a multimode bosonic Josephson junction [0.4335300149154109]
We show how to enhance the quantum correlations in a one-dimensional multimode bosonic Josephson junction.
Our work provides new ways for engineering correlations and entanglement in the external degree of freedom of interacting many-body systems.
arXiv Detail & Related papers (2023-04-05T23:29:05Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Coalescence of non-Markovian dissipation, quantum Zeno effect and
non-Hermitian physics, in a simple realistic quantum system [0.0]
We develop a theoretical framework in terms of the time-dependent Schrodinger equation of motion.
The link between the peaked structure of the effective decay rate of the qubit that interacts indirectly with the environment, and the onset of the quantum Zeno effect is discussed in great detail.
Our treatment and results have revealed an intricate interplay between non-Markovian dynamics, quantum Zeno effect and non-Hermitian physics.
arXiv Detail & Related papers (2022-06-28T09:28:02Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Unification of Random Dynamical Decoupling and the Quantum Zeno Effect [68.8204255655161]
We show that the system dynamics under random dynamical decoupling converges to a unitary with a decoupling error that characteristically depends on the convergence speed of the Zeno limit.
This reveals a unification of the random dynamical decoupling and the quantum Zeno effect.
arXiv Detail & Related papers (2021-12-08T11:41:38Z) - Quantum Zeno effect in self-sustaining systems: suppressing phase
diffusion via repeated measurements [0.0]
We study the effect of frequent projective measurements on the dynamics of quantum self-sustaining systems.
We show that by subjecting the system to repeated measurements of heterodyne type at an appropriate repetition frequency one can significantly suppress phase diffusion without spoiling the semiclassical dynamics.
arXiv Detail & Related papers (2021-07-13T12:56:06Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Probing coherence and noise tolerance in discrete-time quantum walks:
unveiling self-focusing and breathing dynamics [0.0]
We study the consequences of a short-time (instantaneous) noise while an intensity-dependent phase acquisition is associated with a qubit propagating on $N-cycle.
By employing quantum coherence measures, we report emerging unstable regimes in which hitherto unknown quantum walks arise.
arXiv Detail & Related papers (2020-10-28T23:37:59Z) - The role of boundary conditions in quantum computations of scattering
observables [58.720142291102135]
Quantum computing may offer the opportunity to simulate strongly-interacting field theories, such as quantum chromodynamics, with physical time evolution.
As with present-day calculations, quantum computation strategies still require the restriction to a finite system size.
We quantify the volume effects for various $1+1$D Minkowski-signature quantities and show that these can be a significant source of systematic uncertainty.
arXiv Detail & Related papers (2020-07-01T17:43:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.