Steady-state edge burst: From free-particle systems to
interaction-induced phenomena
- URL: http://arxiv.org/abs/2306.08676v2
- Date: Sat, 16 Dec 2023 02:47:09 GMT
- Title: Steady-state edge burst: From free-particle systems to
interaction-induced phenomena
- Authors: Yu-Min Hu, Wen-Tan Xue, Fei Song, Zhong Wang
- Abstract summary: We find that the interplay between the non-Hermitian skin effect and the imaginary gap of lossy lattices results in the edge burst.
We introduce a many-body open-system model in which the two-body loss generates an interaction-induced non-Hermitian skin effect.
Our predictions are testable in state-of-the-art experimental platforms.
- Score: 2.49649604985112
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The interplay between the non-Hermitian skin effect and the imaginary gap of
lossy lattices results in the edge burst, a boundary-induced dynamical
phenomenon in which an exceptionally large portion of particle loss occurs at
the edge. Here, we find that this intriguing non-Hermitian dynamical phenomenon
can be exactly mapped into the steady-state density distribution of a
corresponding open quantum system. Consequently, the bulk-edge scaling relation
of loss probability in the edge burst maps to that of steady-state density.
Furthermore, we introduce a many-body open-system model in which the two-body
loss generates an interaction-induced non-Hermitian skin effect. Using the
positive-$P$ method, we demonstrate the validity of the scaling relation for
steady-state correlators. These results provide a unique perspective on the
interaction-induced many-body non-Hermitian skin effect. Our predictions are
testable in state-of-the-art experimental platforms.
Related papers
- Universal scaling of quantum caustics in the dynamics of interacting particles [0.0]
We investigate the dynamics initiated by a local quench in a spin chain, resulting in outward-propagating excitations that create a distinct caustic pattern.
We calculate the scaling of the first two maxima of the interference fringes dressing the caustic, finding a universal exponent of 2/3, associated with an Airy function catastrophe.
This robust scaling persists even under perturbations that break the integrability of the model.
arXiv Detail & Related papers (2024-10-09T12:00:17Z) - Quantized Thouless pumps protected by interactions in dimerized Rydberg tweezer arrays [41.94295877935867]
In the noninteracting case, quantized Thouless pumps can only occur when a topological singularity is encircled adiabatically.
In the presence of interactions, such topological transport can even persist for exotic paths in which the system gets arbitrarily close to the noninteracting singularity.
arXiv Detail & Related papers (2024-02-14T16:58:21Z) - Collective non-Hermitian skin effect: Point-gap topology and the
doublon-holon excitations in non-reciprocal many-body systems [1.565361244756411]
Non-Hermitian skin effect, macroscopic collapse of bulk states to the boundary, has been extensively studied in various experimental platforms.
Previous studies have shown that the Pauli exclusion principle suppresses the skin effect.
We present a compelling counterexample by demonstrating the presence of the skin effect in doublon-holon excitations.
arXiv Detail & Related papers (2023-09-14T17:43:16Z) - Observation of dynamical degeneracy splitting for the non-Hermitian skin
effect [3.9198767525769145]
The non-Hermitian skin effect is a distinctive phenomenon in non-Hermitian systems.
We report the experimental observation of both phenomena in a two-dimensional acoustic crystal.
arXiv Detail & Related papers (2023-03-20T13:49:49Z) - Dynamical Degeneracy Splitting and Directional Invisibility in
Non-Hermitian Systems [17.001487000146863]
We introduce the concept of dynamical degeneracy splitting to describe the anisotropic decay behaviors in non-Hermitian systems.
We demonstrate that systems with dynamical degeneracy splitting exhibit two distinctive features: (i) the system shows frequency-resolved non-Hermitian skin effect; (ii) Green's function exhibits anomalous at given frequency, leading to uneven broadening in spectral function and anomalous scattering.
arXiv Detail & Related papers (2022-11-14T22:35:42Z) - Topologically bound states, non-Hermitian skin effect and flat bands,
induced by two-particle interaction [91.3755431537592]
We study theoretically repelling quantum states of two spinless particles in a one-dimensional tight-binding model.
We demonstrate, that when the particles are not identical, their interaction drives nontrivial correlated two-particle states.
arXiv Detail & Related papers (2022-11-11T07:34:54Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Gain/loss effects on spin-orbit coupled ultracold atoms in
two-dimensional optical lattices [0.5249805590164902]
We investigate the corresponding non-Hermitian tight-binding model and evaluate the gain/loss effects on various properties of the system.
We find that the conventional bulk-boundary correspondence does not break down with only on-site gain/loss due to the lack of non-Hermitian skin effect.
Given the technical accessibility of state-dependent atom loss, this model could be realized in current cold-atom experiments.
arXiv Detail & Related papers (2022-01-04T16:00:30Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.