論文の概要: HENRI: High Efficiency Negotiation-based Robust Interface for
Multi-party Multi-issue Negotiation over the Internet
- arxiv url: http://arxiv.org/abs/2202.02430v1
- Date: Fri, 4 Feb 2022 23:18:49 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-08 17:50:43.359390
- Title: HENRI: High Efficiency Negotiation-based Robust Interface for
Multi-party Multi-issue Negotiation over the Internet
- Title(参考訳): HENRI:インターネット上でのマルチパーティ間ネゴシエーションのための高効率ネゴシエーションベースロバストインタフェース
- Authors: Saurabh Deochake, Shashank Kanth, Subhadip Chakraborty, Suresh Sarode,
Vidyasagar Potdar, Debajyoti Mukhopadhyay
- Abstract要約: この論文は、各党に関する複数の問題に対して階層的なパターンを定めている。
システムはまた、すべての広告の時間から生きたカウンタなどの機能強化も提供する。
- 参考スコア(独自算出の注目度): 0.7340017786387767
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper proposes a framework for a full fledged negotiation system that
allows multi party multi issue negotiation. It focuses on the negotiation
protocol to be observed and provides a platform for concurrent and independent
negotiation on individual issues using the concept of multi threading. It
depicts the architecture of an agent detailing its components. The paper sets
forth a hierarchical pattern for the multiple issues concerning every party.
The system also provides enhancements such as the time-to-live counters for
every advertisement, refinement of utility considering non-functional
attributes, prioritization of issues, by assigning weights to issues.
- Abstract(参考訳): 本稿では,複数政党による多国間交渉を可能にする,本格的な交渉システムのための枠組みを提案する。
観測すべき交渉プロトコルに注目し、マルチスレッドの概念を用いて個々の問題に対する同時かつ独立した交渉のためのプラットフォームを提供する。
構成要素を詳述するエージェントのアーキテクチャを描いている。
この論文は、各党に関する複数の問題に対して階層的なパターンを定めている。
このシステムは、広告毎のタイム・トゥ・ライブカウンタ、非機能属性を考慮したユーティリティの改良、問題への重み付けを割り当てることによる課題の優先順位付けなどの機能強化も提供する。
関連論文リスト
- AI Multi-Agent Interoperability Extension for Managing Multiparty Conversations [0.0]
本稿では,Open Voice Initiative の既存の Multi-Agent 仕様の新たな拡張について述べる。
Convener Agent、Floor-Shared Conversational Space、Floor Manager、Multi-Conversant Support、InterruptionsやUninvited Agentsなどの新しい概念を導入している。
これらの進歩は、複数のAIエージェントが協力し、議論し、議論に貢献する必要があるシナリオにおいて、スムーズで、効率的で、セキュアな相互作用を保証するために不可欠である。
論文 参考訳(メタデータ) (2024-11-05T18:11:55Z) - INA: An Integrative Approach for Enhancing Negotiation Strategies with
Reward-Based Dialogue System [22.392304683798866]
本稿では,オンラインマーケットプレース向けに設計された対話エージェントを提案する。
我々は,交渉担当者を訓練するための交渉作業に適した,一連の新しい報酬を雇用している。
提案手法と報奨システムはエージェントの交渉能力を大幅に向上させることを示す。
論文 参考訳(メタデータ) (2023-10-27T15:31:16Z) - Cooperation, Competition, and Maliciousness: LLM-Stakeholders Interactive Negotiation [52.930183136111864]
我々は,大言語モデル(LLM)を評価するためにスコーラブルネゴシエーション(scorable negotiations)を提案する。
合意に達するには、エージェントは強力な算術、推論、探索、計画能力を持つ必要がある。
我々は、新しいゲームを作成し、進化するベンチマークを持つことの難しさを増大させる手順を提供する。
論文 参考訳(メタデータ) (2023-09-29T13:33:06Z) - Response Selection for Multi-Party Conversations with Dynamic Topic
Tracking [63.15158355071206]
我々は、応答と関連する会話コンテキストの間のトピックを一致させるために、動的トピック追跡タスクとして応答選択をフレーム化する。
本研究では,大規模な事前学習モデルによる効率的な符号化を支援する新しいマルチタスク学習フレームワークを提案する。
DSTC-8 Ubuntu IRCデータセットの実験結果は、応答選択とトピックのアンタングル化タスクにおける最先端の結果を示している。
論文 参考訳(メタデータ) (2020-10-15T14:21:38Z) - Multi-View Sequence-to-Sequence Models with Conversational Structure for
Abstractive Dialogue Summarization [72.54873655114844]
テキスト要約は、NLPにおいて最も困難で興味深い問題の1つである。
本研究では、まず、異なる視点から構造化されていない日々のチャットの会話構造を抽出し、会話を表現するマルチビューシーケンス・ツー・シーケンスモデルを提案する。
大規模対話要約コーパスの実験により,本手法は,自動評価と人的判断の両面から,従来の最先端モデルよりも有意に優れた性能を示した。
論文 参考訳(メタデータ) (2020-10-04T20:12:44Z) - Topic-Aware Multi-turn Dialogue Modeling [91.52820664879432]
本稿では,トピック認識発話を教師なしでセグメント化して抽出する,多元対話モデリングのための新しいソリューションを提案する。
トピック・アウェア・モデリングは、新たに提案されたトピック・アウェア・セグメンテーション・アルゴリズムとトピック・アウェア・デュアル・アテンション・マッチング(TADAM)ネットワークによって実現されている。
論文 参考訳(メタデータ) (2020-09-26T08:43:06Z) - UniConv: A Unified Conversational Neural Architecture for Multi-domain
Task-oriented Dialogues [101.96097419995556]
ユニコンブ」はタスク指向対話におけるエンドツーエンド対話システムのための新しい統合型ニューラルネットワークである。
我々は、MultiWOZ2.1ベンチマークにおいて、対話状態追跡、コンテキスト・ツー・テキスト、エンドツーエンド設定の包括的な実験を行う。
論文 参考訳(メタデータ) (2020-04-29T16:28:22Z) - Masking Orchestration: Multi-task Pretraining for Multi-role Dialogue
Representation Learning [50.5572111079898]
マルチロール対話理解は、質問応答、行動分類、対話要約など、幅広い多様なタスクを含む。
対話コーパスは豊富に利用可能であるが、特定の学習タスクのためのラベル付きデータは非常に不足しており、高価である。
本研究では,教師なし事前学習タスクを用いた対話文脈表現学習について検討する。
論文 参考訳(メタデータ) (2020-02-27T04:36:52Z) - Numerical Abstract Persuasion Argumentation for Expressing Concurrent
Multi-Agent Negotiations [3.7311680121118336]
2つのエージェントe1,e2による交渉プロセスは、例えばe1,e3間の別の交渉プロセスによってインターリーブすることができる。
議論に基づく交渉の既存の提案は、主に二国間交渉に焦点を当てている。
拡張理論は資源不足に対するマルチエージェントの同時交渉に適していることを示す。
論文 参考訳(メタデータ) (2020-01-23T01:46:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。