Entanglement and quantum discord in the cavity QED models
- URL: http://arxiv.org/abs/2307.07352v3
- Date: Sun, 7 Jan 2024 17:24:48 GMT
- Title: Entanglement and quantum discord in the cavity QED models
- Authors: Miao Hui-hui and Li Wang-shun
- Abstract summary: We investigate the quantum correlation between light and matter in bipartite quantum systems.
To gauge the degree of quantum entanglement, some entanglement measurements are introduced.
consideration is given to the impacts of initial entanglement and dissipation strength on quantum discord.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Based on the two-qubit Jaynes-Cummings model - a common cavity quantum
electrodynamics model, and extending to modification of the three-qubit
Tavis-Cummings model, we investigate the quantum correlation between light and
matter in bipartite quantum systems. By resolving the quantum master equation,
we are able to derive the dissipative dynamics in open systems. To gauge the
degree of quantum entanglement, some entanglement measurements are introduced:
von Neumann entropy, concurrence and quantum discord. In addition,
consideration is given to the impacts of initial entanglement and dissipation
strength on quantum discord. Finally we discussed two different cases of nuclei
motion: quantum and classical.
Related papers
- Investigating the quantum discord dynamics with a bipartite split of the multiqubit system in the correlated photon-matter model [0.0]
We study the quantum discord dynamics in a complex correlated photon-matter model, which is modified from the Tavis-Cummings-Hubbard model.
We are dedicated to identifying the regularity of quantum correlation as the basis for future research on more complex quantum systems.
arXiv Detail & Related papers (2023-07-17T02:56:23Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Implementation of a two-stroke quantum heat engine with a collisional
model [50.591267188664666]
We put forth a quantum simulation of a stroboscopic two-stroke thermal engine in the IBMQ processor.
The system consists of a quantum spin chain connected to two baths at their boundaries, prepared at different temperatures using the variational quantum thermalizer algorithm.
arXiv Detail & Related papers (2022-03-25T16:55:08Z) - Unveiling quantum entanglement and correlation of sub-Ohmic and Ohmic
baths for quantum phase transitions in dissipative systems [6.564294282164792]
We numerically investigate quantum entanglement and correlation of sub-Ohmic and Ohmic baths for dissipative quantum phase transitions.
With several measures borrowed from quantum information theory, three different types of singularities are found for the first-order, second-order, and Kosterlitz-Thouless phase transitions.
The scaling form of the quantum discord in the Ohmic case is identified, quite different from that in the sub-Ohmic regime.
arXiv Detail & Related papers (2022-02-06T02:01:26Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Projection Hypothesis from the von Neumann-type Interaction with a
Bose-Einstein Condensate [0.0]
We derive the projection hypothesis in projective quantum measurement by restricting the set of observables.
The key steps in the derivation are the return of the symmetry translation of this quantum coordinate to the inverse translation of the c-number spatial coordinate in quantum field theory.
arXiv Detail & Related papers (2020-12-03T13:05:36Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z) - Reading a qubit quantum state with a quantum meter: time unfolding of
quantum Darwinism and quantum information flux [0.0]
Quantum non Markovianity and quantum Darwinism are two phenomena linked by a common theme: the flux of quantum information between a quantum system and the quantum environment it interacts with.
We will show how, in some regimes, such quantum information flux is inefficient, leading to the simultaneous emergence of non Markovian and non darwinistic behaviours.
arXiv Detail & Related papers (2020-01-30T20:37:03Z) - Two resonant quantum electrodynamics models of quantum measuring systems [0.0]
A quantum measurement scheme is suggested in two resonant models of quantum electrodynamics.
The first model is the brain, where, for the propagation of its action potentials, the free electron laser-like coherence mechanism recently investigated by the author is comprehensively applied.
The second model is an assembly of Preparata et al.'s coherence domains, in which we incorporate the quantum field theory of memory advocated by Umezawa et al.
arXiv Detail & Related papers (2017-09-20T04:31:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.