論文の概要: Reward is not enough: can we liberate AI from the reinforcement learning paradigm?
- arxiv url: http://arxiv.org/abs/2202.03192v3
- Date: Mon, 11 Nov 2024 09:34:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 17:14:39.621567
- Title: Reward is not enough: can we liberate AI from the reinforcement learning paradigm?
- Title(参考訳): リワードは十分ではない。強化学習パラダイムからAIを解放できるだろうか?
- Authors: Vacslav Glukhov,
- Abstract要約: Reward氏は、自然と人工知能に関連する多くの活動を説明するには不十分だ。
知的行動の複雑さは、報酬の最大化の上の2階の複雑さだけではない。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: I present arguments against the hypothesis put forward by Silver, Singh, Precup, and Sutton ( https://www.sciencedirect.com/science/article/pii/S0004370221000862 ) : reward maximization is not enough to explain many activities associated with natural and artificial intelligence including knowledge, learning, perception, social intelligence, evolution, language, generalisation and imitation. I show such reductio ad lucrum has its intellectual origins in the political economy of Homo economicus and substantially overlaps with the radical version of behaviourism. I show why the reinforcement learning paradigm, despite its demonstrable usefulness in some practical application, is an incomplete framework for intelligence -- natural and artificial. Complexities of intelligent behaviour are not simply second-order complications on top of reward maximisation. This fact has profound implications for the development of practically usable, smart, safe and robust artificially intelligent agents.
- Abstract(参考訳): 私は、Silver, Singh, Precup, Sutton (https://www.sciencedirect.com/science/article/pii/S0004370221000862 )による仮説に対する論証を提示します。
このようなリダクシオ・アド・ルクルムは、ホモ・エコノミクスの政治経済にその知的な起源を持ち、行動主義の過激なバージョンと著しく重なっていることを示す。
私は、強化学習パラダイムが、いくつかの実用的な応用において実証可能な有用性にもかかわらず、インテリジェンスのための不完全なフレームワークである理由を示しています。
知的行動の複雑さは、報酬の最大化の上の2階の複雑さだけではない。
この事実は、実用的で、賢く、安全で、堅牢な人工知能エージェントの開発に深く影響している。
関連論文リスト
- Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
AIシステムは知恵を欠いている。
AI研究はタスクレベルの戦略に焦点を当てているが、メタ認知はAIシステムでは未発達である。
メタ認知機能をAIシステムに統合することは、その堅牢性、説明可能性、協力性、安全性を高めるために不可欠である。
論文 参考訳(メタデータ) (2024-11-04T18:10:10Z) - Spontaneous Theory of Mind for Artificial Intelligence [2.7624021966289605]
我々は、AIマインド理論(ToM)の研究・開発における原則的アプローチを論じる。
我々は、強い、あるいは一般のAISが、テキストに反応し、自発的に社会的推論を行うよう提案する。
論文 参考訳(メタデータ) (2024-02-16T22:41:13Z) - On a Functional Definition of Intelligence [0.0]
合意されたインテリジェンスの定義がなければ、"このシステムはインテリジェントか?
知性(intelligence)とは、哲学、心理学、認知科学の分野である。
我々は、その知性が実際に達成される方法とは異なる、純粋に機能的でブラックボックスな知性の定義について論じる。
論文 参考訳(メタデータ) (2023-12-15T05:46:49Z) - Enabling High-Level Machine Reasoning with Cognitive Neuro-Symbolic
Systems [67.01132165581667]
本稿では,認知アーキテクチャを外部のニューロシンボリックコンポーネントと統合することにより,AIシステムにおける高レベル推論を実現することを提案する。
本稿では,ACT-Rを中心としたハイブリッドフレームワークについて紹介し,最近の応用における生成モデルの役割について論じる。
論文 参考訳(メタデータ) (2023-11-13T21:20:17Z) - The Generative AI Paradox: "What It Can Create, It May Not Understand" [81.89252713236746]
生成AIの最近の波は、潜在的に超人的な人工知能レベルに対する興奮と懸念を引き起こしている。
同時に、モデルは、専門家でない人でも期待できないような理解の基本的な誤りを示している。
一見超人的な能力と、ごく少数の人間が起こすエラーの持続性を、どうやって再現すればよいのか?
論文 参考訳(メタデータ) (2023-10-31T18:07:07Z) - From Psychological Curiosity to Artificial Curiosity: Curiosity-Driven
Learning in Artificial Intelligence Tasks [56.20123080771364]
心理学的好奇心は、探索と情報取得を通じて学習を強化するために、人間の知性において重要な役割を果たす。
人工知能(AI)コミュニティでは、人工好奇心は効率的な学習に自然な本質的な動機を与える。
CDLはますます人気を博し、エージェントは新たな知識を学習するために自己動機付けされている。
論文 参考訳(メタデータ) (2022-01-20T17:07:03Z) - Scalar reward is not enough: A response to Silver, Singh, Precup and
Sutton (2021) [5.377016988002648]
我々は、スカラー報酬が生物学的および計算知性の両方の側面を考慮するには不十分であると主張している。
このアプローチを、安全でない、または非倫理的な行動の許容できないリスクのために、人工知能の開発に使用するのは、依然として望ましくない。
論文 参考訳(メタデータ) (2021-11-25T00:58:23Z) - Inductive Biases for Deep Learning of Higher-Level Cognition [108.89281493851358]
興味深い仮説は、人間と動物の知性はいくつかの原則によって説明できるということである。
この研究は、主に高いレベルとシーケンシャルな意識的処理に関心のある人を中心に、より大きなリストを考察する。
これらの特定の原則を明確にする目的は、人間の能力から恩恵を受けるAIシステムを構築するのに役立つ可能性があることである。
論文 参考訳(メタデータ) (2020-11-30T18:29:25Z) - Future Trends for Human-AI Collaboration: A Comprehensive Taxonomy of
AI/AGI Using Multiple Intelligences and Learning Styles [95.58955174499371]
我々は、複数の人間の知性と学習スタイルの様々な側面を説明し、様々なAI問題領域に影響を及ぼす可能性がある。
未来のAIシステムは、人間のユーザと互いにコミュニケーションするだけでなく、知識と知恵を効率的に交換できる。
論文 参考訳(メタデータ) (2020-08-07T21:00:13Z) - Dynamic Cognition Applied to Value Learning in Artificial Intelligence [0.0]
この分野の数人の研究者が、堅牢で有益で安全な人工知能の概念を開発しようとしている。
人工知能エージェントが人間の価値観に合わせた価値を持っていることは、最も重要である。
この問題に対する可能なアプローチは、SEDのような理論モデルを使用することである。
論文 参考訳(メタデータ) (2020-05-12T03:58:52Z) - Is Intelligence Artificial? [0.0]
本稿では,自然界,次に人工知能に適用可能な統一的な定義を提案する。
コルモゴロフの複素性理論に基づく計量が示唆され、エントロピーに関する測度が導かれる。
承認されたAIテストのバージョンは、後に 'acid test' として提示され、フリー思考プログラムが達成しようとするものかもしれない。
論文 参考訳(メタデータ) (2014-03-05T11:09:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。