Locally mediated entanglement in linearised quantum gravity
- URL: http://arxiv.org/abs/2202.03368v2
- Date: Tue, 5 Dec 2023 15:04:10 GMT
- Title: Locally mediated entanglement in linearised quantum gravity
- Authors: Marios Christodoulou, Andrea Di Biagio, Markus Aspelmeyer, \v{C}aslav
Brukner, Carlo Rovelli, Richard Howl
- Abstract summary: An information-theoretic argument: entanglement mediated by a local field certifies that the field is not classical.
Previous derivations of the effect modelled gravity as instantaneous.
In this framework, entanglement is clearly mediated by a quantum feature of the field.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The current interest in laboratory detection of entanglement mediated by
gravity was sparked by an information--theoretic argument: entanglement
mediated by a local field certifies that the field is not classical. Previous
derivations of the effect modelled gravity as instantaneous; here we derive it
from linearised quantum general relativity while keeping Lorentz invariance
explicit, using the path integral formalism. In this framework, entanglement is
clearly mediated by a quantum feature of the field. We also point out the
possibility of observing retarded entanglement, which cannot be explained by an
instantaneous interaction. This is a difficult experiment for gravity, but is
plausible for the analogous electromagnetic case.
Related papers
- Semiclassical gravity phenomenology under the causal-conditional quantum measurement prescription II: Heisenberg picture and apparent optical entanglement [13.04737397490371]
In quantum gravity theory, a state-dependent gravitational potential introduces nonlinearity into the state evolution.
The formalism for understanding the continuous quantum measurement process on the quantum state has been previously discussed using the Schr"odinger picture.
In this work, an equivalent formalism using the Heisenberg picture is developed and applied to the analysis of two optomechanical experiment protocols.
arXiv Detail & Related papers (2024-11-08T14:07:18Z) - Real-time dynamics of false vacuum decay [49.1574468325115]
We investigate false vacuum decay of a relativistic scalar field in the metastable minimum of an asymmetric double-well potential.
We employ the non-perturbative framework of the two-particle irreducible (2PI) quantum effective action at next-to-leading order in a large-N expansion.
arXiv Detail & Related papers (2023-10-06T12:44:48Z) - Entanglement and quantum teleportation under superposed gravitational
fields [10.2542434092619]
The influence of gravitational field on entanglement of bipartite states is investigated based on the recent idea of superposition states of gravitational field.
The influence of gravitational field on the transfer of the state through quantum teleportation is also studied.
arXiv Detail & Related papers (2022-10-08T14:16:04Z) - Inference of gravitational field superposition from quantum measurements [1.7246954941200043]
In non-relativistic quantum mechanics, the gravitational field in such experiments can be written as a superposition state.
We empirically demonstrate that alternative theories of gravity can avoid gravitational superposition states.
Proposed experiments with superposed gravitational sources would provide even stronger evidence that gravity is nonclassical.
arXiv Detail & Related papers (2022-09-06T04:37:07Z) - Is gravitational entanglement evidence for the quantization of
spacetime? [0.0]
Experiments witnessing the entanglement between two particles interacting only via the gravitational field have been proposed as a test whether gravity must be quantized.
We present a parametrized model for the gravitational interaction of quantum matter on a classical spacetime, inspired by the de Broglie-Bohm formulation of quantum mechanics.
arXiv Detail & Related papers (2022-05-02T14:37:24Z) - Quantum dynamics corresponding to chaotic BKL scenario [62.997667081978825]
Quantization smears the gravitational singularity avoiding its localization in the configuration space.
Results suggest that the generic singularity of general relativity can be avoided at quantum level.
arXiv Detail & Related papers (2022-04-24T13:32:45Z) - Spin, Statistics, Spacetime and Quantum Gravity [0.0]
We suggest that the gravitational field could provide a fully local mechanism for the phase that arises when fermionic and bosonic particles are exchanged.
Our results hold even if the symmetry of space and time is Galilean.
We present a new experiment for testing the quantum nature of the gravitational field.
arXiv Detail & Related papers (2021-12-06T22:31:24Z) - Genuine multipartite entanglement and quantum coherence in an
electron-positron system: Relativistic covariance [117.44028458220427]
We analyze the behavior of both genuine multipartite entanglement and quantum coherence under Lorentz boosts.
A given combination of these quantum resources is shown to form a Lorentz invariant.
arXiv Detail & Related papers (2021-11-26T17:22:59Z) - Quantum interference in external gravitational fields beyond General
Relativity [0.0]
We study the phenomenon of quantum interference in the presence of external gravitational fields.
In the non-relativistic regime, it is possible to come across a gravitational counterpart of the Bohm-Aharonov effect.
On the other hand, beyond the Newtonian approximation, the relativistic nature of gravity plays a crucial role.
arXiv Detail & Related papers (2021-04-22T16:11:42Z) - Decoherence of massive superpositions induced by coupling to a quantized
gravitational field [0.0]
We calculate the quantum gravitationally-induced decoherence of a spatial superposition of a massive object in the linear coupling regime.
We discuss how to experimentally discriminate between decoherence due to entanglement, decoherence due to classical dephasig as well as a genuine collapse of quantum superpositions.
arXiv Detail & Related papers (2020-05-29T14:27:38Z) - Bell's theorem for trajectories [62.997667081978825]
A trajectory is not an outcome of a quantum measurement, in the sense that there is no observable associated with it.
We show how to overcome this problem by considering a special case of our generic inequality that can be experimentally tested point-by-point in time.
arXiv Detail & Related papers (2020-01-03T01:40:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.