Entanglement and quantum teleportation under superposed gravitational
fields
- URL: http://arxiv.org/abs/2210.04034v1
- Date: Sat, 8 Oct 2022 14:16:04 GMT
- Title: Entanglement and quantum teleportation under superposed gravitational
fields
- Authors: Yue Li, Baocheng Zhang, and Li You
- Abstract summary: The influence of gravitational field on entanglement of bipartite states is investigated based on the recent idea of superposition states of gravitational field.
The influence of gravitational field on the transfer of the state through quantum teleportation is also studied.
- Score: 10.2542434092619
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The influence of gravitational field on entanglement of bipartite states is
investigated based on the recent idea of superposition states of gravitational
field. Different from earlier considerations, we study the case where the
gravitational field cannot be separated unitarily from the bipartite system in
the final stage of the interaction. When the different gravitational field
states are orthogonal, entanglement cannot be generated for an initial product
state. If the different gravitational field states are non-orthogonal,
entanglement can be generated and the amount of generated entanglement depends
on an overlap parameter between different gravitational field states. The
influence of gravitational field on the transfer of the state through quantum
teleportation is also studied, which might lead to an observable effect since
the quantum teleportation can be performed using macroscopic object.
Related papers
- Entanglement Dynamics in Quantum Continuous-Variable States [2.480301925841752]
Gravitation between two quantum masses is one of the most straightforward scenarios where quantum features of gravity could be observed.
This thesis introduces general tools to tackle interaction-mediated entanglement and applies them to two particles prepared in continuous-variable states.
arXiv Detail & Related papers (2024-05-12T19:21:21Z) - Quantum effects in gravity beyond the Newton potential from a delocalised quantum source [0.9405321764712891]
We show for the first time that gravity is not compatible with a classical description.
Experiments such as the generation of gravitationally induced entanglement between two quantum sources of gravity can be explained with the Newton potential.
arXiv Detail & Related papers (2024-02-15T19:33:04Z) - Quantumness of gravitational field: A perspective on monogamy relation [0.0]
The purpose of this study is to deepen our understanding of the phenomenon of quantum superposition of gravitational fields.
We consider a trade-off relation of entanglement in a tripartite system consisting of two massive particles and a gravitational field that may be entangled with each other.
Our results may help understand the relationship between the quantization of the gravitational field and the meaning of the quantum superposition of the gravitational field.
arXiv Detail & Related papers (2024-01-08T12:57:22Z) - Testing the nonclassicality of gravity with the field of a single
delocalized mass [55.2480439325792]
A setup is proposed that is based on a single delocalized mass coupled to a harmonically trapped test mass.
We investigate the in-principle feasibility of such an experiment, which turns out to crucially depend on the ability to tame Casimir-Polder forces.
arXiv Detail & Related papers (2023-07-18T15:40:16Z) - Does the Universe have its own mass? [62.997667081978825]
The mass of the universe is a distribution of non-zero values of gravitational constraints.
A formulation of the Euclidean quantum theory of gravity is also proposed to determine the initial state.
Being unrelated to ordinary matter, the distribution of its own mass affects the geometry of space.
arXiv Detail & Related papers (2022-12-23T22:01:32Z) - Conditions for graviton emission in the recombination of a delocalized
mass [91.3755431537592]
In a known gedanken experiment, a delocalized mass is recombined while the gravitational field sourced by it is probed by another (distant) particle.
Here, we focus on the delocalized particle and explore the conditions (in terms of mass, separation, and recombination time) for graviton emission.
arXiv Detail & Related papers (2022-09-21T13:51:27Z) - Inference of gravitational field superposition from quantum measurements [1.7246954941200043]
In non-relativistic quantum mechanics, the gravitational field in such experiments can be written as a superposition state.
We empirically demonstrate that alternative theories of gravity can avoid gravitational superposition states.
Proposed experiments with superposed gravitational sources would provide even stronger evidence that gravity is nonclassical.
arXiv Detail & Related papers (2022-09-06T04:37:07Z) - Is gravitational entanglement evidence for the quantization of
spacetime? [0.0]
Experiments witnessing the entanglement between two particles interacting only via the gravitational field have been proposed as a test whether gravity must be quantized.
We present a parametrized model for the gravitational interaction of quantum matter on a classical spacetime, inspired by the de Broglie-Bohm formulation of quantum mechanics.
arXiv Detail & Related papers (2022-05-02T14:37:24Z) - Spin-1/2 particles under the influence of a uniform magnetic field in
the interior Schwarzschild solution [62.997667081978825]
relativistic wave equation for spin-1/2 particles in the interior Schwarzschild solution in the presence of a uniform magnetic field is obtained.
Results are relevant to the physics of the interior of neutron stars, where both the gravitational and the magnetic fields are very intense.
arXiv Detail & Related papers (2021-11-30T14:46:00Z) - Gravitational waves affect vacuum entanglement [68.8204255655161]
The entanglement harvesting protocol is an operational way to probe vacuum entanglement.
Using this protocol, it is demonstrated that while the transition probability of an individual atom is unaffected by the presence of a gravitational wave, the entanglement harvested by two atoms depends sensitively on the frequency of the gravitational wave.
This suggests that the entanglement signature left by a gravitational wave may be useful in characterizing its properties, and potentially useful in exploring the gravitational-wave memory effect and gravitational-wave induced decoherence.
arXiv Detail & Related papers (2020-06-19T18:01:04Z) - Atom-interferometric test of the universality of gravitational redshift
and free fall [48.82541018696971]
Light-pulse atom interferometers constitute powerful quantum sensors for inertial forces.
We present a specific geometry which together with state transitions leads to a scheme that is sensitive to both violations of the universality of free fall and gravitational redshift.
arXiv Detail & Related papers (2020-01-27T13:35:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.