Evolving Tsukamoto Neuro Fuzzy Model for Multiclass Covid 19
Classification with Chest X Ray Images
- URL: http://arxiv.org/abs/2305.10421v1
- Date: Wed, 17 May 2023 17:55:45 GMT
- Title: Evolving Tsukamoto Neuro Fuzzy Model for Multiclass Covid 19
Classification with Chest X Ray Images
- Authors: Marziyeh Rezaei, Sevda Molani, Negar Firoozeh, Hossein Abbasi, Farzan
Vahedifard, Maysam Orouskhani
- Abstract summary: We propose a machine learning based framework for the detection of Covid 19.
The proposed model employs a Tsukamoto Neuro Fuzzy Inference network to identify and distinguish Covid 19 disease.
The proposed model achieves an accuracy of 98.51%, sensitivity of 98.35%, specificity of 98.08%, and F1 score of 98.17%.
- Score: 2.609784101826762
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Du e to rapid population growth and the need to use artificial intelligence
to make quick decisions, developing a machine learning-based disease detection
model and abnormality identification system has greatly improved the level of
medical diagnosis Since COVID-19 has become one of the most severe diseases in
the world, developing an automatic COVID-19 detection framework helps medical
doctors in the diagnostic process of disease and provides correct and fast
results. In this paper, we propose a machine lear ning based framework for the
detection of Covid 19. The proposed model employs a Tsukamoto Neuro Fuzzy
Inference network to identify and distinguish Covid 19 disease from normal and
pneumonia cases. While the traditional training methods tune the parameters of
the neuro-fuzzy model by gradient-based algorithms and recursive least square
method, we use an evolutionary-based optimization, the Cat swarm algorithm to
update the parameters. In addition, six texture features extracted from chest
X-ray images are give n as input to the model. Finally, the proposed model is
conducted on the chest X-ray dataset to detect Covid 19. The simulation results
indicate that the proposed model achieves an accuracy of 98.51%, sensitivity of
98.35%, specificity of 98.08%, and F1 score of 98.17%.
Related papers
- AttCDCNet: Attention-enhanced Chest Disease Classification using X-Ray Images [0.0]
We propose a novel detection model named textbfAttCDCNet for the task of X-ray image diagnosis.
The proposed model achieved an accuracy, precision and recall of 94.94%, 95.14% and 94.53%, respectively, on the COVID-19 Radiography dataset.
arXiv Detail & Related papers (2024-10-20T16:08:20Z) - Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
Co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas.
This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection.
arXiv Detail & Related papers (2024-09-29T07:04:26Z) - SynthEnsemble: A Fusion of CNN, Vision Transformer, and Hybrid Models for Multi-Label Chest X-Ray Classification [0.6218519716921521]
We employ deep learning techniques to identify patterns in chest X-rays that correspond to different diseases.
The best individual model was the CoAtNet, which achieved an area under the receiver operating characteristic curve (AUROC) of 84.2%.
arXiv Detail & Related papers (2023-11-13T21:07:07Z) - A Novel Implementation of Machine Learning for the Efficient,
Explainable Diagnosis of COVID-19 from Chest CT [0.0]
The aim of this study was to take a novel approach in the machine learning-based detection of COVID-19 from chest CT scans.
The proposed model attained an overall accuracy of 0.927 and a sensitivity of 0.958.
arXiv Detail & Related papers (2022-06-15T18:35:22Z) - Multi-Label Classification of Thoracic Diseases using Dense Convolutional Network on Chest Radiographs [0.0]
We propose a multi-label disease prediction model that allows the detection of more than one pathology at a given test time.
Our proposed model achieved the highest AUC score of 0.896 for the condition Cardiomegaly.
arXiv Detail & Related papers (2022-02-08T00:43:57Z) - COVID-19 Pneumonia and Influenza Pneumonia Detection Using Convolutional
Neural Networks [0.0]
We developed a computer solution to support vision in differentiating between COVID-19 pneumonia, influenza virus pneumonia, and normal biomarkers.
In its classification performance, the best performing model demonstrated a validation accuracy of 93% and an F1 score of 0.95.
arXiv Detail & Related papers (2021-12-14T01:59:25Z) - Wide & Deep neural network model for patch aggregation in CNN-based
prostate cancer detection systems [51.19354417900591]
Prostate cancer (PCa) is one of the leading causes of death among men, with almost 1.41 million new cases and around 375,000 deaths in 2020.
To perform an automatic diagnosis, prostate tissue samples are first digitized into gigapixel-resolution whole-slide images.
Small subimages called patches are extracted and predicted, obtaining a patch-level classification.
arXiv Detail & Related papers (2021-05-20T18:13:58Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Momentum Contrastive Learning for Few-Shot COVID-19 Diagnosis from Chest
CT Images [41.73507451077361]
We propose a new deep learning algorithm for the automated diagnosis of COVID-19, which only requires a few samples for training.
We use contrastive learning to train an encoder which can capture expressive feature representations on large and publicly available lung datasets.
Our results demonstrate the superior performance of our model for the accurate diagnosis of COVID-19 based on chest CT images.
arXiv Detail & Related papers (2020-06-16T10:14:58Z) - Adaptive Feature Selection Guided Deep Forest for COVID-19
Classification with Chest CT [49.09507792800059]
We propose an Adaptive Feature Selection guided Deep Forest (AFS-DF) for COVID-19 classification based on chest CT images.
We evaluate our proposed AFS-DF on COVID-19 dataset with 1495 patients of COVID-19 and 1027 patients of community acquired pneumonia (CAP)
arXiv Detail & Related papers (2020-05-07T06:00:02Z) - Residual Attention U-Net for Automated Multi-Class Segmentation of
COVID-19 Chest CT Images [46.844349956057776]
coronavirus disease 2019 (COVID-19) has been spreading rapidly around the world and caused significant impact on the public health and economy.
There is still lack of studies on effectively quantifying the lung infection caused by COVID-19.
We propose a novel deep learning algorithm for automated segmentation of multiple COVID-19 infection regions.
arXiv Detail & Related papers (2020-04-12T16:24:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.