A multiscale spatiotemporal approach for smallholder irrigation
detection
- URL: http://arxiv.org/abs/2202.04239v1
- Date: Wed, 9 Feb 2022 02:50:42 GMT
- Title: A multiscale spatiotemporal approach for smallholder irrigation
detection
- Authors: Terence Conlon, Christopher Small, Vijay Modi
- Abstract summary: This paper presents an irrigation detection methodology that leverages multiscale satellite imagery of vegetation abundance.
The methodology is applied to detect smallholder irrigation in two states in the Ethiopian highlands, Tigray and Amhara.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In presenting an irrigation detection methodology that leverages multiscale
satellite imagery of vegetation abundance, this paper introduces a process to
supplement limited ground-collected labels and ensure classifier applicability
in an area of interest. Spatiotemporal analysis of MODIS 250m Enhanced
Vegetation Index (EVI) timeseries characterizes native vegetation phenologies
at regional scale to provide the basis for a continuous phenology map that
guides supplementary label collection over irrigated and non-irrigated
agriculture. Subsequently, validated dry season greening and senescence cycles
observed in 10m Sentinel-2 imagery are used to train a suite of classifiers for
automated detection of potential smallholder irrigation. Strategies to improve
model robustness are demonstrated, including a method of data augmentation that
randomly shifts training samples; and an assessment of classifier types that
produce the best performance in withheld target regions. The methodology is
applied to detect smallholder irrigation in two states in the Ethiopian
highlands, Tigray and Amhara. Results show that a transformer-based neural
network architecture allows for the most robust prediction performance in
withheld regions, followed closely by a CatBoost random forest model. Over
withheld ground-collection survey labels, the transformer-based model achieves
96.7% accuracy over non-irrigated samples and 95.9% accuracy over irrigated
samples. Over a larger set of samples independently collected via the
introduced method of label supplementation, non-irrigated and irrigated labels
are predicted with 98.3% and 95.5% accuracy, respectively. The detection model
is then deployed over Tigray and Amhara, revealing crop rotation patterns and
year-over-year irrigated area change. Predictions suggest that irrigated area
in these two states has decreased by approximately 40% from 2020 to 2021.
Related papers
- Vision-based Xylem Wetness Classification in Stem Water Potential Determination [8.597874067545233]
This work focused on automating stem detection and xylem wetness classification using the Scholander Pressure Chamber.
The aim was to refine stem detection and develop computer-vision-based methods to better classify water emergence at the xylem.
Learning-based stem detection via YOLOv8n combined with ResNet50-based classification achieved a Top-1 accuracy of 80.98%.
arXiv Detail & Related papers (2024-09-24T19:24:04Z) - BonnBeetClouds3D: A Dataset Towards Point Cloud-based Organ-level
Phenotyping of Sugar Beet Plants under Field Conditions [30.27773980916216]
Agricultural production is facing severe challenges in the next decades induced by climate change and the need for sustainability.
Advancements in field management through non-chemical weeding by robots in combination with monitoring of crops by autonomous unmanned aerial vehicles (UAVs) are helpful to address these challenges.
The analysis of plant traits, called phenotyping, is an essential activity in plant breeding, it however involves a great amount of manual labor.
arXiv Detail & Related papers (2023-12-22T14:06:44Z) - HarvestNet: A Dataset for Detecting Smallholder Farming Activity Using
Harvest Piles and Remote Sensing [50.4506590177605]
HarvestNet is a dataset for mapping the presence of farms in the Ethiopian regions of Tigray and Amhara during 2020-2023.
We introduce a new approach based on the detection of harvest piles characteristic of many smallholder systems.
We conclude that remote sensing of harvest piles can contribute to more timely and accurate cropland assessments in food insecure regions.
arXiv Detail & Related papers (2023-08-23T11:03:28Z) - Generative models-based data labeling for deep networks regression:
application to seed maturity estimation from UAV multispectral images [3.6868861317674524]
Monitoring seed maturity is an increasing challenge in agriculture due to climate change and more restrictive practices.
Traditional methods are based on limited sampling in the field and analysis in laboratory.
We propose a method for estimating parsley seed maturity using multispectral UAV imagery, with a new approach for automatic data labeling.
arXiv Detail & Related papers (2022-08-09T09:06:51Z) - End-to-end deep learning for directly estimating grape yield from
ground-based imagery [53.086864957064876]
This study demonstrates the application of proximal imaging combined with deep learning for yield estimation in vineyards.
Three model architectures were tested: object detection, CNN regression, and transformer models.
The study showed the applicability of proximal imaging and deep learning for prediction of grapevine yield on a large scale.
arXiv Detail & Related papers (2022-08-04T01:34:46Z) - Fake It Till You Make It: Near-Distribution Novelty Detection by
Score-Based Generative Models [54.182955830194445]
existing models either fail or face a dramatic drop under the so-called near-distribution" setting.
We propose to exploit a score-based generative model to produce synthetic near-distribution anomalous data.
Our method improves the near-distribution novelty detection by 6% and passes the state-of-the-art by 1% to 5% across nine novelty detection benchmarks.
arXiv Detail & Related papers (2022-05-28T02:02:53Z) - Potato Crop Stress Identification in Aerial Images using Deep
Learning-based Object Detection [60.83360138070649]
The paper presents an approach for analyzing aerial images of a potato crop using deep neural networks.
The main objective is to demonstrate automated spatial recognition of a healthy versus stressed crop at a plant level.
Experimental validation demonstrated the ability for distinguishing healthy and stressed plants in field images, achieving an average Dice coefficient of 0.74.
arXiv Detail & Related papers (2021-06-14T21:57:40Z) - Surface Warping Incorporating Machine Learning Assisted Domain
Likelihood Estimation: A New Paradigm in Mine Geology Modelling and
Automation [68.8204255655161]
A Bayesian warping technique has been proposed to reshape modeled surfaces based on geochemical and spatial constraints imposed by newly acquired blasthole data.
This paper focuses on incorporating machine learning in this warping framework to make the likelihood generalizable.
Its foundation is laid by a Bayesian computation in which the geological domain likelihood given the chemistry, p(g|c) plays a similar role to p(y(c)|g.
arXiv Detail & Related papers (2021-02-15T10:37:52Z) - High-resolution global irrigation prediction with Sentinel-2 30m data [0.8137198664755597]
An accurate and precise understanding of global irrigation usage is crucial for a variety of climate science efforts.
We have developed a novel irrigation model and Python package ("Irrigation30") to generate 30m resolution irrigation predictions of cropland worldwide.
Our model was able to achieve consistency scores in excess of 97% and an accuracy of 92% in a small geo-diverse randomly sampled test set.
arXiv Detail & Related papers (2020-12-09T17:26:43Z) - Two-View Fine-grained Classification of Plant Species [66.75915278733197]
We propose a novel method based on a two-view leaf image representation and a hierarchical classification strategy for fine-grained recognition of plant species.
A deep metric based on Siamese convolutional neural networks is used to reduce the dependence on a large number of training samples and make the method scalable to new plant species.
arXiv Detail & Related papers (2020-05-18T21:57:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.