論文の概要: A Data-Driven Approach to Robust Hypothesis Testing Using Sinkhorn
Uncertainty Sets
- arxiv url: http://arxiv.org/abs/2202.04258v2
- Date: Fri, 11 Feb 2022 04:29:44 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-14 12:20:00.450848
- Title: A Data-Driven Approach to Robust Hypothesis Testing Using Sinkhorn
Uncertainty Sets
- Title(参考訳): シンクホーン不確かさ集合を用いたロバスト仮説テストへのデータ駆動アプローチ
- Authors: Jie Wang and Yao Xie
- Abstract要約: シンクホーン距離を用いた試料から, 実験分布を中心とした分布不確実性集合に対する最悪の検出法を求める。
ワッサーシュタインのロバスト試験と比較すると、対応する最も好ましい分布はトレーニングサンプルを超えてサポートされ、より柔軟な検出器を提供する。
- 参考スコア(独自算出の注目度): 12.061662346636645
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hypothesis testing for small-sample scenarios is a practically important
problem. In this paper, we investigate the robust hypothesis testing problem in
a data-driven manner, where we seek the worst-case detector over distributional
uncertainty sets centered around the empirical distribution from samples using
Sinkhorn distance. Compared with the Wasserstein robust test, the corresponding
least favorable distributions are supported beyond the training samples, which
provides a more flexible detector. Various numerical experiments are conducted
on both synthetic and real datasets to validate the competitive performances of
our proposed method.
- Abstract(参考訳): 小さなサンプルシナリオの仮説テストは、事実上重要な問題である。
本稿では,実験的分布に着目した分布的不確実性集合上の最悪の場合をシンクホーン距離を用いて探索し,データ駆動方式でロバストな仮説検証問題を検討する。
wassersteinロバストテストと比較すると、より柔軟な検出器を提供するトレーニングサンプルを超えて、最も好ましくない分布がサポートされている。
提案手法の競合性能を検証するため,合成データと実データの両方について様々な数値実験を行った。
関連論文リスト
- Non-Convex Robust Hypothesis Testing using Sinkhorn Uncertainty Sets [18.46110328123008]
非破壊仮説テスト問題に対処する新しい枠組みを提案する。
目標は、最大数値リスクを最小限に抑える最適な検出器を探すことである。
論文 参考訳(メタデータ) (2024-03-21T20:29:43Z) - Sequential Predictive Two-Sample and Independence Testing [114.4130718687858]
逐次的非パラメトリック2サンプルテストと独立テストの問題点について検討する。
私たちは賭けによる(非パラメトリックな)テストの原則に基づいています。
論文 参考訳(メタデータ) (2023-04-29T01:30:33Z) - Null Hypothesis Test for Anomaly Detection [0.0]
我々は、背景のみの仮説を除外した仮説テストを用いて、異常検出のための分類不要ラベルの使用を拡張した。
2つの識別されたデータセット領域の統計的独立性をテストすることで、固定された異常スコアのカットや、各領域間の背景推定の外挿に頼ることなく、背景のみの仮説を除外することができる。
論文 参考訳(メタデータ) (2022-10-05T13:03:55Z) - Kernel Robust Hypothesis Testing [20.78285964841612]
本稿では,カーネル方式を用いて不確実性集合をデータ駆動方式で構築する。
目標は、不確実性集合上の最悪のケース分布の下でうまく機能するテストを設計することである。
Neyman-Pearsonの設定では、誤検知の最悪のケース確率を最小限に抑え、誤警報の最悪のケース確率を制約する。
論文 参考訳(メタデータ) (2022-03-23T23:59:03Z) - Robust hypothesis testing and distribution estimation in Hellinger
distance [18.950453666957692]
最適なネマン・ピアソン検定と同一のサンプル複雑性を持つ単純な頑健な仮説検定を提案する。
本稿では,ヘリンジャー距離における分布推定のためのロバストなテストの適用性について論じる。
論文 参考訳(メタデータ) (2020-11-03T17:09:32Z) - Cross-validation Confidence Intervals for Test Error [83.67415139421448]
この研究は、クロスバリデーションのための中心極限定理と、学習アルゴリズムの弱い安定性条件下での分散の一貫した推定器を開発する。
結果は、一般的な1対1のクロスバリデーションの選択にとって、初めてのものだ。
論文 参考訳(メタデータ) (2020-07-24T17:40:06Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
補間分類器間のテストエラーの完全な分布を正確に計算する手法を開発した。
テストエラーは、最悪の補間モデルのテストエラーから大きく逸脱する、小さな典型的な$varepsilon*$に集中する傾向にある。
以上の結果から,統計的学習理論における通常の解析手法は,実際に観測された優れた一般化性能を捉えるのに十分な粒度にはならない可能性が示唆された。
論文 参考訳(メタデータ) (2020-06-22T21:12:31Z) - Two-Sample Testing on Ranked Preference Data and the Role of Modeling
Assumptions [57.77347280992548]
本稿では,ペアワイズ比較データとランキングデータのための2サンプル試験を設計する。
私たちのテストでは、基本的に分布に関する仮定は必要ありません。
実世界のペアワイズ比較データに2サンプルテストを適用することで、人によって提供される評価とランキングは、実際は異なる分散である、と結論付ける。
論文 参考訳(メタデータ) (2020-06-21T20:51:09Z) - Balance-Subsampled Stable Prediction [55.13512328954456]
本稿では, 分数分解設計理論に基づく新しいバランスサブサンプル安定予測法を提案する。
設計理論解析により,提案手法は分布シフトによって誘導される予測器間の共起効果を低減できることを示した。
合成および実世界の両方のデータセットに関する数値実験により、BSSPアルゴリズムは未知のテストデータ間で安定した予測を行うためのベースライン法を著しく上回っていることが示された。
論文 参考訳(メタデータ) (2020-06-08T07:01:38Z) - Learning Kernel Tests Without Data Splitting [18.603394415852765]
データ分割なしにハイパーパラメータの学習と全サンプルでのテストを可能にするアプローチを提案する。
我々のアプローチの試験能力は、その分割割合に関係なく、データ分割アプローチよりも経験的に大きい。
論文 参考訳(メタデータ) (2020-06-03T14:07:39Z) - Compressing Large Sample Data for Discriminant Analysis [78.12073412066698]
判別分析フレームワーク内での大きなサンプルサイズに起因する計算問題を考察する。
線形および二次判別分析のためのトレーニングサンプル数を削減するための新しい圧縮手法を提案する。
論文 参考訳(メタデータ) (2020-05-08T05:09:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。