論文の概要: Null Hypothesis Test for Anomaly Detection
- arxiv url: http://arxiv.org/abs/2210.02226v1
- Date: Wed, 5 Oct 2022 13:03:55 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-06 15:37:26.162435
- Title: Null Hypothesis Test for Anomaly Detection
- Title(参考訳): 異常検出のためのNull仮説テスト
- Authors: Jernej F. Kamenik, Manuel Szewc
- Abstract要約: 我々は、背景のみの仮説を除外した仮説テストを用いて、異常検出のための分類不要ラベルの使用を拡張した。
2つの識別されたデータセット領域の統計的独立性をテストすることで、固定された異常スコアのカットや、各領域間の背景推定の外挿に頼ることなく、背景のみの仮説を除外することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We extend the use of Classification Without Labels for anomaly detection with
a hypothesis test designed to exclude the background-only hypothesis. By
testing for statistical independence of the two discriminating dataset regions,
we are able exclude the background-only hypothesis without relying on fixed
anomaly score cuts or extrapolations of background estimates between regions.
The method relies on the assumption of conditional independence of anomaly
score features and dataset regions, which can be ensured using existing
decorrelation techniques. As a benchmark example, we consider the LHC Olympics
dataset where we show that mutual information represents a suitable test for
statistical independence and our method exhibits excellent and robust
performance at different signal fractions even in presence of realistic feature
correlations.
- Abstract(参考訳): 背景のみの仮説を除外するように設計された仮説テストを用いて,ラベルなしの分類法を異常検出に適用する。
2つの識別データセット領域の統計的独立性をテストすることにより、一定の異常スコアカットや領域間の背景推定の補間に頼ることなく、背景のみ仮説を除外することができる。
この手法は異常スコアの特徴とデータセット領域の条件付き独立性の仮定に依存しており、既存のデコリレーション手法を用いて保証することができる。
ベンチマークの例として,統計的独立性に適した相互情報を示すLHCオリンピックデータセットを考察し,現実的な特徴相関の存在下においても,異なる信号分数で優れた頑健性を示す手法を提案する。
関連論文リスト
- Internal Incoherency Scores for Constraint-based Causal Discovery Algorithms [12.524536193679124]
仮説違反や有限サンプル誤りの検証が可能な内部コヒーレンシスコアを提案する。
シミュレーションおよび実世界のデータセットを用いて,PCアルゴリズムにおけるコヒーレンシースコアについて述べる。
論文 参考訳(メタデータ) (2025-02-20T16:44:54Z) - Selective Nonparametric Regression via Testing [54.20569354303575]
本研究では,所定の点における条件分散の値に関する仮説を検証し,留置手順を開発する。
既存の手法とは異なり、提案手法は分散自体の値だけでなく、対応する分散予測器の不確実性についても考慮することができる。
論文 参考訳(メタデータ) (2023-09-28T13:04:11Z) - Sequential Predictive Two-Sample and Independence Testing [114.4130718687858]
逐次的非パラメトリック2サンプルテストと独立テストの問題点について検討する。
私たちは賭けによる(非パラメトリックな)テストの原則に基づいています。
論文 参考訳(メタデータ) (2023-04-29T01:30:33Z) - Empirical Bayesian Approaches for Robust Constraint-based Causal
Discovery under Insufficient Data [38.883810061897094]
因果発見法は、多くの実世界のデータセットではそうではないかもしれないデータ飽和度を仮定する。
本研究では,制約に基づく因果探索手法の性能向上を図るため,ベイジアンによる頻繁な独立性試験を提案する。
実験の結果,SOTA法よりも精度と効率が向上した。
論文 参考訳(メタデータ) (2022-06-16T21:08:49Z) - Nonparametric Conditional Local Independence Testing [69.31200003384122]
条件付き局所独立は、連続的な時間プロセス間の独立関係である。
条件付き地域独立の非パラメトリックテストは行われていない。
二重機械学習に基づく非パラメトリックテストを提案する。
論文 参考訳(メタデータ) (2022-03-25T10:31:02Z) - Model-agnostic out-of-distribution detection using combined statistical
tests [15.27980070479021]
本稿では,学習された生成モデルを用いた分布外検出のための簡易な手法を提案する。
古典的パラメトリックテスト(ラオのスコアテスト)と最近導入された定性テストを組み合わせる。
その単純さと汎用性にもかかわらず、これらの手法はモデル固有のアウト・オブ・ディストリビューション検出アルゴリズムと競合することがある。
論文 参考訳(メタデータ) (2022-03-02T13:32:09Z) - Data-SUITE: Data-centric identification of in-distribution incongruous
examples [81.21462458089142]
Data-SUITEは、ID(In-distriion)データの不連続領域を特定するためのデータ中心のフレームワークである。
我々は,Data-SUITEの性能保証とカバレッジ保証を実証的に検証する。
論文 参考訳(メタデータ) (2022-02-17T18:58:31Z) - A Data-Driven Approach to Robust Hypothesis Testing Using Sinkhorn
Uncertainty Sets [12.061662346636645]
シンクホーン距離を用いた試料から, 実験分布を中心とした分布不確実性集合に対する最悪の検出法を求める。
ワッサーシュタインのロバスト試験と比較すると、対応する最も好ましい分布はトレーニングサンプルを超えてサポートされ、より柔軟な検出器を提供する。
論文 参考訳(メタデータ) (2022-02-09T03:26:15Z) - Density of States Estimation for Out-of-Distribution Detection [69.90130863160384]
DoSEは状態推定器の密度である。
我々は、他の教師なしOOD検出器に対するDoSEの最先端性能を実証する。
論文 参考訳(メタデータ) (2020-06-16T16:06:25Z) - On Disentangled Representations Learned From Correlated Data [59.41587388303554]
相関データに対する最も顕著な絡み合うアプローチの挙動を解析することにより、現実のシナリオにギャップを埋める。
本研究では,データセットの体系的相関が学習され,潜在表現に反映されていることを示す。
また、トレーニング中の弱い監督や、少数のラベルで事前訓練されたモデルを修正することで、これらの潜伏相関を解消する方法を実証する。
論文 参考訳(メタデータ) (2020-06-14T12:47:34Z) - Universal Data Anomaly Detection via Inverse Generative Adversary
Network [4.162663632560141]
異常データの配信にはトレーニングデータがない。
逆生成逆ネットワークに基づく半教師付き深層学習手法を提案する。
論文 参考訳(メタデータ) (2020-01-23T21:11:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。