Reliability analysis for non-deterministic limit-states using stochastic emulators
- URL: http://arxiv.org/abs/2412.13731v1
- Date: Wed, 18 Dec 2024 11:08:56 GMT
- Title: Reliability analysis for non-deterministic limit-states using stochastic emulators
- Authors: Anderson V. Pires, Maliki Moustapha, Stefano Marelli, Bruno Sudret,
- Abstract summary: This paper introduces reliability analysis for models and addresses it by using suitable surrogate models to lower its typically high computational cost.
Specifically, we focus on the recently introduced generalized models and chaos expansions.
We validate our methodology through three case studies. First, using an analytical function with a closed-form solution, we demonstrate that the emulators converge to the correct solution.
- Score: 0.0
- License:
- Abstract: Reliability analysis is a sub-field of uncertainty quantification that assesses the probability of a system performing as intended under various uncertainties. Traditionally, this analysis relies on deterministic models, where experiments are repeatable, i.e., they produce consistent outputs for a given set of inputs. However, real-world systems often exhibit stochastic behavior, leading to non-repeatable outcomes. These so-called stochastic simulators produce different outputs each time the model is run, even with fixed inputs. This paper formally introduces reliability analysis for stochastic models and addresses it by using suitable surrogate models to lower its typically high computational cost. Specifically, we focus on the recently introduced generalized lambda models and stochastic polynomial chaos expansions. These emulators are designed to learn the inherent randomness of the simulator's response and enable efficient uncertainty quantification at a much lower cost than traditional Monte Carlo simulation. We validate our methodology through three case studies. First, using an analytical function with a closed-form solution, we demonstrate that the emulators converge to the correct solution. Second, we present results obtained from the surrogates using a toy example of a simply supported beam. Finally, we apply the emulators to perform reliability analysis on a realistic wind turbine case study, where only a dataset of simulation results is available.
Related papers
- Tests for model misspecification in simulation-based inference: from local distortions to global model checks [2.0209172586699173]
We provide a solid and flexible foundation for a wide range of model discrepancy analysis tasks.
We make explicit analytic connections to classical techniques: anomaly detection, model validation, and goodness-of-fit residual analysis.
We show how to conduct such a distortion-driven model misspecification test for real gravitational wave data, specifically on the event GW150914.
arXiv Detail & Related papers (2024-12-19T17:48:03Z) - Differentiable Calibration of Inexact Stochastic Simulation Models via Kernel Score Minimization [11.955062839855334]
We propose to learn differentiable input parameters of simulation models using output-level data via kernel score minimization with gradient descent.
We quantify the uncertainties of the learned input parameters using a new normality result that accounts for model inexactness.
arXiv Detail & Related papers (2024-11-08T04:13:52Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - On Least Square Estimation in Softmax Gating Mixture of Experts [78.3687645289918]
We investigate the performance of the least squares estimators (LSE) under a deterministic MoE model.
We establish a condition called strong identifiability to characterize the convergence behavior of various types of expert functions.
Our findings have important practical implications for expert selection.
arXiv Detail & Related papers (2024-02-05T12:31:18Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - Nonparametric Conditional Local Independence Testing [69.31200003384122]
Conditional local independence is an independence relation among continuous time processes.
No nonparametric test of conditional local independence has been available.
We propose such a nonparametric test based on double machine learning.
arXiv Detail & Related papers (2022-03-25T10:31:02Z) - Robust Bayesian Inference for Simulator-based Models via the MMD
Posterior Bootstrap [13.448658162594604]
We propose a novel algorithm based on the posterior bootstrap and maximum mean discrepancy estimators.
This leads to a highly-parallelisable Bayesian inference algorithm with strong properties.
The approach is then assessed on a range of examples including a g-and-k distribution and a toggle-switch model.
arXiv Detail & Related papers (2022-02-09T22:12:19Z) - Transport away your problems: Calibrating stochastic simulations with
optimal transport [0.0]
We leverage methods from transportation theory to construct "calibrated" simulators.
We use a neural network to compute minimal modifications to the individual samples produced by the simulator.
We illustrate the method and its benefits in the context of experimental particle physics.
arXiv Detail & Related papers (2021-07-19T07:11:13Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
We develop a methodology to compute precisely the full distribution of test errors among interpolating classifiers.
We find that test errors tend to concentrate around a small typical value $varepsilon*$, which deviates substantially from the test error of worst-case interpolating model.
Our results show that the usual style of analysis in statistical learning theory may not be fine-grained enough to capture the good generalization performance observed in practice.
arXiv Detail & Related papers (2020-06-22T21:12:31Z) - Efficiently Sampling Functions from Gaussian Process Posteriors [76.94808614373609]
We propose an easy-to-use and general-purpose approach for fast posterior sampling.
We demonstrate how decoupled sample paths accurately represent Gaussian process posteriors at a fraction of the usual cost.
arXiv Detail & Related papers (2020-02-21T14:03:16Z) - DISCO: Double Likelihood-free Inference Stochastic Control [29.84276469617019]
We propose to leverage the power of modern simulators and recent techniques in Bayesian statistics for likelihood-free inference.
The posterior distribution over simulation parameters is propagated through a potentially non-analytical model of the system.
Experiments show that the controller proposed attained superior performance and robustness on classical control and robotics tasks.
arXiv Detail & Related papers (2020-02-18T05:29:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.