論文の概要: Deep Signatures -- Learning Invariants of Planar Curves
- arxiv url: http://arxiv.org/abs/2202.05922v1
- Date: Fri, 11 Feb 2022 22:34:15 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-18 13:25:53.004967
- Title: Deep Signatures -- Learning Invariants of Planar Curves
- Title(参考訳): Deep Signatures -- 平面曲線の不変性を学ぶ
- Authors: Roy Velich, Ron Kimmel
- Abstract要約: 平面曲線の微分不変量の数値近似のための学習パラダイムを提案する。
深層ニューラルネットワーク(DNN)の普遍近似特性を用いて幾何学的測度を推定する。
- 参考スコア(独自算出の注目度): 12.699486382844393
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a learning paradigm for numerical approximation of differential
invariants of planar curves. Deep neural-networks' (DNNs) universal
approximation properties are utilized to estimate geometric measures. The
proposed framework is shown to be a preferable alternative to axiomatic
constructions. Specifically, we show that DNNs can learn to overcome
instabilities and sampling artifacts and produce numerically-stable signatures
for curves subject to a given group of transformations in the plane. We compare
the proposed schemes to alternative state-of-the-art axiomatic constructions of
group invariant arc-lengths and curvatures.
- Abstract(参考訳): 平面曲線の微分不変量の数値近似のための学習パラダイムを提案する。
深層ニューラルネットワーク(DNN)の普遍近似特性を用いて幾何学的測度を推定する。
提案するフレームワークは, 公理的構成の代替として好適であることが示されている。
具体的には、DNNが不安定性を克服し、アーティファクトをサンプリングし、平面上の所定の変換群に従う曲線の数値安定シグネチャを生成することができることを示す。
提案するスキームを,群不変弧長と曲率の交互な漸近的構成と比較する。
関連論文リスト
- Relative Representations: Topological and Geometric Perspectives [53.88896255693922]
相対表現はゼロショットモデルの縫合に対する確立されたアプローチである。
相対変換において正規化手順を導入し、非等方的再スケーリングや置換に不変となる。
第二に、クラス内のクラスタリングを促進するトポロジカル正規化損失である、微調整された相対表現におけるトポロジカルデシフィケーションの展開を提案する。
論文 参考訳(メタデータ) (2024-09-17T08:09:22Z) - A Unified Theory of Stochastic Proximal Point Methods without Smoothness [52.30944052987393]
近点法はその数値的安定性と不完全なチューニングに対する頑健性からかなりの関心を集めている。
本稿では,近位点法(SPPM)の幅広いバリエーションの包括的解析について述べる。
論文 参考訳(メタデータ) (2024-05-24T21:09:19Z) - Learning Differential Invariants of Planar Curves [12.699486382844393]
平面曲線の微分不変量の数値近似の学習パラダイムを提案する。
深層ニューラルネットワーク(DNN)の普遍近似特性を用いて幾何学的測度を推定する。
論文 参考訳(メタデータ) (2023-03-06T19:30:43Z) - Geometric Scattering on Measure Spaces [12.0756034112778]
測度空間上での幾何散乱の一般統一モデルを導入する。
未知多様体をランダムにサンプリングして得られる有限測度空間を考える。
本稿では, 関連するグラフ散乱変換が基礎多様体上の散乱変換を近似するデータ駆動グラフを構築するための2つの方法を提案する。
論文 参考訳(メタデータ) (2022-08-17T22:40:09Z) - Geometric variational inference [0.0]
変分推論 (VI) またはマルコフ・チェイン・モンテカルロ (MCMC) 技術は点推定を超えて用いられる。
本研究は,リーマン幾何学とフィッシャー情報量に基づく幾何学的変分推論(geoVI)を提案する。
変換によって誘導される座標系で表される分布は、特に単純であり、正確な変分近似を可能にする。
論文 参考訳(メタデータ) (2021-05-21T17:18:50Z) - A Differential Geometry Perspective on Orthogonal Recurrent Models [56.09491978954866]
我々は微分幾何学からのツールと洞察を用いて、直交rnnの新しい視点を提供する。
直交RNNは、発散自由ベクトル場の空間における最適化と見なすことができる。
この観測に動機づけられて、ベクトル場全体の空間にまたがる新しいリカレントモデルの研究を行う。
論文 参考訳(メタデータ) (2021-02-18T19:39:22Z) - Tractable structured natural gradient descent using local
parameterizations [43.51581051770027]
構造化パラメータ空間上の自然勾配降下は、複雑な逆フィッシャー行列計算により計算的に困難である。
我々は, emphlocal-パラメータ座標を用いてこの問題に対処する。
我々は、ディープラーニング、変分推論、進化戦略に関する様々な応用について結果を示す。
論文 参考訳(メタデータ) (2021-02-15T09:09:20Z) - Efficient Semi-Implicit Variational Inference [65.07058307271329]
効率的でスケーラブルな半単純外挿 (SIVI) を提案する。
本手法はSIVIの証拠を低勾配値の厳密な推測にマッピングする。
論文 参考訳(メタデータ) (2021-01-15T11:39:09Z) - Probabilistic Circuits for Variational Inference in Discrete Graphical
Models [101.28528515775842]
変分法による離散的グラフィカルモデルの推論は困難である。
エビデンス・ロウアーバウンド(ELBO)を推定するためのサンプリングに基づく多くの手法が提案されている。
Sum Product Networks (SPN) のような確率的回路モデルのトラクタビリティを活用する新しい手法を提案する。
選択的SPNが表現的変動分布として適していることを示し、対象モデルの対数密度が重み付けされた場合、対応するELBOを解析的に計算可能であることを示す。
論文 参考訳(メタデータ) (2020-10-22T05:04:38Z) - Gauge Equivariant Mesh CNNs: Anisotropic convolutions on geometric
graphs [81.12344211998635]
メッシュ上の畳み込みを定義する一般的なアプローチは、それらをグラフとして解釈し、グラフ畳み込みネットワーク(GCN)を適用することである。
本稿では、GCNを一般化して異方性ゲージ同変カーネルを適用するGauge Equivariant Mesh CNNを提案する。
本実験は,従来のGCNおよび他の手法と比較して,提案手法の表現性を大幅に向上することを示した。
論文 参考訳(メタデータ) (2020-03-11T17:21:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。