Generalized Matching Condition for Unity Efficiency Quantum Transduction
- URL: http://arxiv.org/abs/2202.06960v1
- Date: Mon, 14 Feb 2022 19:00:00 GMT
- Title: Generalized Matching Condition for Unity Efficiency Quantum Transduction
- Authors: Chiao-Hsuan Wang, Mengzhen Zhang, and Liang Jiang
- Abstract summary: We present a generic formalism for $N$-stage quantum transduction.
We identify effective circuit models and the resulting generalized matching conditions.
We suggest new regimes of non-resonant conversions that might outperform all-resonant ones.
- Score: 2.5496329090462626
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Coherently converting quantum states between distinct elements via quantum
transducers remains a crucial yet challenging task in quantum science.
Especially in demand is quantum transduction between optical frequencies, which
are ideal for low-loss transmission across long distances, and microwave
frequencies, which admit high-fidelity quantum operations. We present a generic
formalism for $N$-stage quantum transduction that covers various leading
microwave-to-optical, microwave-to-microwave, and optical-to-optical linear
conversion approaches. We then identify effective circuit models and the
resulting generalized matching conditions for achieving maximum conversion
efficiency. The generalized matching condition requires resistance matching as
well as frequency matching beyond the usual resonant assumption, with simple
impedance-matched transmission interpretation. Our formalism provides a generic
toolbox for determining experimental parameters to realize efficient quantum
transduction, and suggests new regimes of non-resonant conversions that might
outperform all-resonant ones.
Related papers
- Passive environment-assisted quantum transduction with GKP states [2.5578936059708783]
Quantum transducers convert quantum signals from one carrier to another through hybrid interfaces of physical systems.
For a quantum transducer between two bosonic modes, direct quantum transduction without shared entanglement or classical communication typically requires a conversion efficiency exceeding 0.5.
We find that by choosing the ideal Gottesman-Kitaev-Preskill (GKP) states as the initial states of both modes, perfect quantum transduction can be achieved at arbitrarily low conversion efficiencies.
arXiv Detail & Related papers (2024-01-30T06:41:52Z) - Amplification of quantum transfer and quantum ratchet [56.47577824219207]
We study a model of amplification of quantum transfer and making it directed which we call the quantum ratchet model.
The ratchet effect is achieved in the quantum control model with dissipation and sink, where the Hamiltonian depends on vibrations in the energy difference synchronized with transitions between energy levels.
Amplitude and frequency of the oscillating vibron together with the dephasing rate are the parameters of the quantum ratchet which determine its efficiency.
arXiv Detail & Related papers (2023-12-31T14:04:43Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Quantum-inspired optimization for wavelength assignment [51.55491037321065]
We propose and develop a quantum-inspired algorithm for solving the wavelength assignment problem.
Our results pave the way to the use of quantum-inspired algorithms for practical problems in telecommunications.
arXiv Detail & Related papers (2022-11-01T07:52:47Z) - Quantum transduction is enhanced by single mode squeezing operators [2.3339135709418817]
We show a new approach to relax the impedance matching condition to half impedance matching condition, which is achieved by introducing two-photon drive in the electro-optic transducer.
We show the quantum transduction capacity can be enhanced and can be understood in a simple interference picture with the help of Bloch-Messiah decomposition.
arXiv Detail & Related papers (2022-04-12T04:32:40Z) - Quantum Capacities of Transducers [2.8655318786364408]
We use the concept of quantum capacity, the highest achievable qubit communication rate through a channel, to quantify the performance of a transducer.
We show that the highest continuous-time quantum capacity $Qrm max approx 31.4 g_rm max$ is achieved by transducers with a maximally flat conversion frequency response.
arXiv Detail & Related papers (2022-02-28T19:00:00Z) - Probing quantum devices with radio-frequency reflectometry [68.48453061559003]
Radio-frequency reflectometry can measure changes in impedance even when their duration is extremely short, down to a microsecond or less.
Examples of reflectometry experiments include projective measurements of qubits and Majorana devices for quantum computing.
This book aims to introduce the readers to the technique, to review the advances to date and to motivate new experiments in fast quantum device dynamics.
arXiv Detail & Related papers (2022-02-21T20:14:21Z) - Deterministic microwave-optical transduction based on quantum
teleportation [4.046143379963425]
coherent transduction between microwave and optical frequencies is critical to interconnect superconducting quantum processors over long distances.
We propose a scheme based on continuous-variable quantum teleportation.
We show that the teleportation-based scheme maintains a significant rate advantage robustly for all values of cooperativity.
arXiv Detail & Related papers (2021-06-26T15:02:49Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Robust decompositions of quantum states [0.0]
We establish a classical-quantum complexity equivalence using a noisy quantum circuit model.
We construct two distinct variants, both of which are compatible with machine-learning methodology.
They both enable efficiently computable lower bounds on von Neumann entropy and thus can be used as finite-temperature variational quantum Monte Carlo methods.
arXiv Detail & Related papers (2020-03-09T14:28:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.