論文の概要: Analysis of Neural Fragility: Bounding the Norm of a Rank-One
Perturbation Matrix
- arxiv url: http://arxiv.org/abs/2202.07026v1
- Date: Mon, 14 Feb 2022 20:38:30 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-17 08:59:29.623493
- Title: Analysis of Neural Fragility: Bounding the Norm of a Rank-One
Perturbation Matrix
- Title(参考訳): 神経脆弱度の解析--ランク1摂動行列のノルムを束縛する
- Authors: Adam Li, Chester Huynh
- Abstract要約: データから線形力学系の優れた推定器が与えられると、神経の脆弱性はよく定義されたモデルであることが示される。
具体的には、基礎となる線形系とノイズの関数として、神経の脆弱性に関するバウンダリを提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Over 15 million epilepsy patients worldwide do not respond to drugs and
require surgical treatment. Successful surgical treatment requires complete
removal, or disconnection of the epileptogenic zone (EZ), but without a
prospective biomarker of the EZ, surgical success rates vary between 30%-70%.
Neural fragility is a model recently proposed to localize the EZ. Neural
fragility is computed as the l2 norm of a structured rank-one perturbation of
an estimated linear dynamical system. However, an analysis of its numerical
properties have not been explored. We show that neural fragility is a
well-defined model given a good estimator of the linear dynamical system from
data. Specifically, we provide bounds on neural fragility as a function of the
underlying linear system and noise.
- Abstract(参考訳): 世界中で1500万人以上のてんかん患者が薬物に反応せず、外科治療を必要としている。
外科的治療は、EZ(てんかん原性領域)の完全除去または切断を必要とするが、EZの先進的なバイオマーカーがなければ、手術成功率は30%から70%の間で異なる。
neural fragilityはezをローカライズするために最近提案されたモデルである。
線形力学系の構造的ランク1摂動のl2ノルムとして神経脆弱性を計算する。
しかし,その数値的性質の解析は行われていない。
データから線形力学系の優れた推定器が与えられると、神経脆弱性はよく定義されたモデルであることが示される。
具体的には,基礎となる線形系と雑音の関数として,神経親和性の境界を与える。
関連論文リスト
- Learning Dissipative Neural Dynamical Systems [0.8993153817914281]
一般に、ニューラルネットワークトレーニング中に拡散性の制約を課すことは、既知のテクニックが存在しない難しい問題である。
これらの2つの摂動問題は独立して解き、散逸することが保証される神経力学モデルが得られることを示す。
論文 参考訳(メタデータ) (2023-09-27T21:25:26Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
連続時間自己回帰リカレントニューラルネットワーク(Continuous Time Autoregressive Recurrent Neural Network, CTRNN)は、不規則な観測を考慮に入れたディープラーニングモデルである。
重篤なケア環境下での血糖値の確率予測へのこれらのモデルの適用を実証する。
論文 参考訳(メタデータ) (2023-04-14T09:39:06Z) - Neural Abstractions [72.42530499990028]
本稿では,ニューラルネットワークを用いた非線形力学モデルの安全性検証手法を提案する。
提案手法は,既存のベンチマーク非線形モデルにおいて,成熟度の高いFlow*と同等に動作することを示す。
論文 参考訳(メタデータ) (2023-01-27T12:38:09Z) - Brain Tumor MRI Classification using a Novel Deep Residual and Regional
CNN [0.0]
Res-BRNet Convolutional Neural Network (CNN) は脳腫瘍(磁気共鳴イメージング)MRIの診断に有用である。
開発されたRes-BRNetの効率は、KaggleとFigshareから収集された標準データセットに基づいて評価される。
実験により、Res-BRNetは標準CNNモデルよりも優れ、優れた性能を示した。
論文 参考訳(メタデータ) (2022-11-29T20:14:13Z) - StRegA: Unsupervised Anomaly Detection in Brain MRIs using a Compact
Context-encoding Variational Autoencoder [48.2010192865749]
教師なし異常検出(UAD)は、健康な被験者の異常なデータセットからデータ分布を学習し、分布サンプルの抽出に応用することができる。
本研究では,コンテクストエンコーディング(context-encoding)VAE(ceVAE)モデルのコンパクトバージョンと,前処理と後処理のステップを組み合わせて,UADパイプライン(StRegA)を作成することを提案する。
提案したパイプラインは、BraTSデータセットのT2w画像と0.859$pm$0.112の腫瘍を検出しながら、Diceスコアが0.642$pm$0.101に達した。
論文 参考訳(メタデータ) (2022-01-31T14:27:35Z) - SOUL: An Energy-Efficient Unsupervised Online Learning Seizure Detection
Classifier [68.8204255655161]
神経活動を記録して発作を検出するインプラントデバイスは、発作を抑えるために警告を発したり神経刺激を誘発したりするために採用されている。
移植可能な発作検出システムでは、低出力で最先端のオンライン学習アルゴリズムを使用して、神経信号のドリフトに動的に適応することができる。
SOULはTSMCの28nmプロセスで0.1mm2を占め、1.5nJ/分級エネルギー効率を実現した。
論文 参考訳(メタデータ) (2021-10-01T23:01:20Z) - Integrating Expert ODEs into Neural ODEs: Pharmacology and Disease
Progression [71.7560927415706]
潜在ハイブリッドモデル(LHM)は、専門家が設計したODEのシステムと機械学習したNeural ODEを統合し、システムのダイナミクスを完全に記述する。
新型コロナウイルス患者のLHMと実世界の集中治療データについて検討した。
論文 参考訳(メタデータ) (2021-06-05T11:42:45Z) - Is the brain macroscopically linear? A system identification of resting
state dynamics [7.312557272609717]
ニューラルダイナミクスの計算モデリングにおける中心的な課題は、精度と単純さのトレードオフである。
この仮説を、全脳血中酸素レベル依存性(BOLD)と顕微鏡場電位ダイナミクスのレベルで厳密かつデータ駆動的に調査します。
以上の結果から,視神経力学の理解と,神経精神疾患治療のためのモデルに基づく介入の原理的設計の促進が期待できる。
論文 参考訳(メタデータ) (2020-12-22T20:51:42Z) - Neuro-symbolic Neurodegenerative Disease Modeling as Probabilistic
Programmed Deep Kernels [93.58854458951431]
本稿では、神経変性疾患のパーソナライズされた予測モデリングのための、確率的プログラムによる深層カーネル学習手法を提案する。
我々の分析は、ニューラルネットワークとシンボリック機械学習のアプローチのスペクトルを考慮する。
我々は、アルツハイマー病の予測問題について評価を行い、深層学習を超越した結果を得た。
論文 参考訳(メタデータ) (2020-09-16T15:16:03Z) - An artificial intelligence system for predicting the deterioration of
COVID-19 patients in the emergency department [28.050958444802944]
新型コロナウイルス感染症(COVID-19)のパンデミックでは、救急署の患者を迅速かつ正確にトリアージすることが重要である。
胸部X線画像から学習したディープニューラルネットワークを用いて,データ駆動による劣化リスクの自動予測手法を提案する。
我々は3,661人の患者から得られたデータを用いて,96時間以内の劣化を予測した場合に,受信者の動作特性曲線(AUC)が0.786未満の領域を達成した。
論文 参考訳(メタデータ) (2020-08-04T19:20:31Z) - Longitudinal Pooling & Consistency Regularization to Model Disease
Progression from MRIs [11.979581631288832]
本稿では,新しい縦型プール層に特徴抽出を結合させることにより,来訪者間の特徴を結合することを提案する。
アルツハイマー病神経画像イニシアチブ(ADNI)は,正常な274例とアルコール使用障害(AUD)329例からなる。
これら3つの実験において、我々の方法は、他の広く使われている縦断的分類法よりも優れているため、脳への条件の影響をより正確に追跡するのに一意に寄与する。
論文 参考訳(メタデータ) (2020-03-31T05:28:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。