論文の概要: Learning Dissipative Neural Dynamical Systems
- arxiv url: http://arxiv.org/abs/2309.16032v2
- Date: Fri, 5 Apr 2024 19:44:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-10 04:37:55.830802
- Title: Learning Dissipative Neural Dynamical Systems
- Title(参考訳): 散逸型ニューラル力学系を学習する
- Authors: Yuezhu Xu, S. Sivaranjani,
- Abstract要約: 一般に、ニューラルネットワークトレーニング中に拡散性の制約を課すことは、既知のテクニックが存在しない難しい問題である。
これらの2つの摂動問題は独立して解き、散逸することが保証される神経力学モデルが得られることを示す。
- 参考スコア(独自算出の注目度): 0.8993153817914281
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Consider an unknown nonlinear dynamical system that is known to be dissipative. The objective of this paper is to learn a neural dynamical model that approximates this system, while preserving the dissipativity property in the model. In general, imposing dissipativity constraints during neural network training is a hard problem for which no known techniques exist. In this work, we address the problem of learning a dissipative neural dynamical system model in two stages. First, we learn an unconstrained neural dynamical model that closely approximates the system dynamics. Next, we derive sufficient conditions to perturb the weights of the neural dynamical model to ensure dissipativity, followed by perturbation of the biases to retain the fit of the model to the trajectories of the nonlinear system. We show that these two perturbation problems can be solved independently to obtain a neural dynamical model that is guaranteed to be dissipative while closely approximating the nonlinear system.
- Abstract(参考訳): 散逸的に知られている未知の非線形力学系を考える。
本研究の目的は, モデル内の拡散特性を保ちながら, この系を近似したニューラル力学モデルを学習することである。
一般に、ニューラルネットワークトレーニング中に拡散性の制約を課すことは、既知のテクニックが存在しない難しい問題である。
本研究では,2段階の散逸性ニューラル・ダイナミクス・システムモデルを学習する問題に対処する。
まず、システムの力学を近似した、制約のない神経力学モデルを学ぶ。
次に、神経力学モデルの重みを摂動させて解離性を確保するのに十分な条件を導出し、続いてバイアスの摂動により非線形系の軌道に対するモデルの適合性を維持する。
これらの2つの摂動問題を独立に解き、非線形系を密接に近似しながら散逸することが保証される神経力学モデルが得られることを示す。
関連論文リスト
- Probabilistic Decomposed Linear Dynamical Systems for Robust Discovery of Latent Neural Dynamics [5.841659874892801]
時間変化線形状態空間モデルは、ニューラルネットワークの数学的解釈可能な表現を得るための強力なツールである。
潜在変数推定のための既存の手法は、動的ノイズやシステムの非線形性に対して堅牢ではない。
本稿では,動的雑音に対するロバスト性を改善するために,分解モデルにおける潜在変数推定に対する確率的アプローチを提案する。
論文 参考訳(メタデータ) (2024-08-29T18:58:39Z) - Modeling Latent Neural Dynamics with Gaussian Process Switching Linear Dynamical Systems [2.170477444239546]
ガウス過程スイッチング線形力学系(gpSLDS)の2つの目的をバランスさせるアプローチを開発する。
我々の手法は、非線形力学をガウス過程(GP-SDE)で記述した微分方程式による潜在状態の進化をモデル化した以前の研究に基づいている。
本手法は, 離散状態境界近傍の力学における人工振動など, rSLDS の重要な限界を解消するとともに, 力学の後方不確かさを推定する。
論文 参考訳(メタデータ) (2024-07-19T15:32:15Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Neural Abstractions [72.42530499990028]
本稿では,ニューラルネットワークを用いた非線形力学モデルの安全性検証手法を提案する。
提案手法は,既存のベンチマーク非線形モデルにおいて,成熟度の高いFlow*と同等に動作することを示す。
論文 参考訳(メタデータ) (2023-01-27T12:38:09Z) - Decomposed Linear Dynamical Systems (dLDS) for learning the latent
components of neural dynamics [6.829711787905569]
本稿では,時系列データの非定常および非線形の複雑なダイナミクスを表現した新しい分解力学系モデルを提案する。
我々のモデルは辞書学習によって訓練され、最近の結果を利用してスパースベクトルを時間とともに追跡する。
連続時間と離散時間の両方の指導例において、我々のモデルは元のシステムによく近似できることを示した。
論文 参考訳(メタデータ) (2022-06-07T02:25:38Z) - Physics guided neural networks for modelling of non-linear dynamics [0.0]
この研究は、ディープニューラルネットワークの中間層に部分的に既知の情報を注入することで、モデルの精度を向上し、モデルの不確実性を低減し、トレーニング中に収束性を向上させることを実証する。
これらの物理誘導ニューラルネットワークの価値は、非線形系理論においてよく知られた5つの方程式で表される様々な非線形力学系の力学を学習することによって証明されている。
論文 参考訳(メタデータ) (2022-05-13T19:06:36Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
データ駆動モデリングは、真のシステムの観測からシステムの力学の近似を学ぼうとする代替パラダイムである。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概要に加えて、関連する文献を概説し、このモデリングパラダイムが克服すべき数値シミュレーションから最も重要な課題を概説する。
論文 参考訳(メタデータ) (2021-11-02T10:51:42Z) - Neural ODE Processes [64.10282200111983]
NDP(Neural ODE Process)は、Neural ODEの分布によって決定される新しいプロセスクラスである。
我々のモデルは,少数のデータポイントから低次元システムのダイナミクスを捉えることができることを示す。
論文 参考訳(メタデータ) (2021-03-23T09:32:06Z) - Constrained Block Nonlinear Neural Dynamical Models [1.3163098563588727]
既知の優先度によって調整されたニューラルネットワークモジュールは、非線形ダイナミクスを持つシステムを表現するために効果的に訓練および結合することができる。
提案手法は,入力,状態,出力のダイナミクスを表現するニューラルネットワークブロックで構成され,ネットワーク重みとシステム変数に制約を課す。
3つの非線形システムのシステム識別タスクにおける提案アーキテクチャと学習手法の性能評価を行った。
論文 参考訳(メタデータ) (2021-01-06T04:27:54Z) - Learning Stable Deep Dynamics Models [91.90131512825504]
状態空間全体にわたって安定することが保証される力学系を学習するためのアプローチを提案する。
このような学習システムは、単純な力学系をモデル化することができ、複雑な力学を学習するために追加の深層生成モデルと組み合わせることができることを示す。
論文 参考訳(メタデータ) (2020-01-17T00:04:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。