Experimental analysis of quantum annealers and hybrid solvers using
benchmark optimization problems
- URL: http://arxiv.org/abs/2202.08939v1
- Date: Thu, 17 Feb 2022 23:46:27 GMT
- Title: Experimental analysis of quantum annealers and hybrid solvers using
benchmark optimization problems
- Authors: Evangelos Stogiannos and Christos Papalitsas and Theodore Andronikos
- Abstract summary: This paper studies the Hamiltonian Cycle Problem (HCP) and the Traveling Salesman Problem (TSP) on D-Wave's quantum systems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper studies the Hamiltonian Cycle Problem (HCP) and the Traveling
Salesman Problem (TSP) on D-Wave's quantum systems. Initially, motivated by the
fact that most libraries present their benchmark instances in terms of
adjacency matrices, we develop a novel matrix formulation for the HCP and TSP
Hamiltonians, which enables the seamless and automatic integration of benchmark
instances in quantum platforms. our extensive experimental tests have led us to
some interesting conclusions. D-Wave's {\tt Advantage\_system4.1} is more
efficient than {\tt Advantage\_system1.1} both in terms of qubit utilization
and quality of solutions. Finally, we experimentally establish that D-Wave's
Hybrid solvers always provide a valid solution to a problem, without violating
the QUBO constraints, even for arbitrarily big problems, of the order of $120$
nodes. When solving TSP instances, the solutions produced by the quantum
annealer are often invalid, in the sense that they violate the topology of the
graph. To address this use we advocate the use of \emph{min-max normalization}
for the coefficients of the TSP Hamiltonian. Finally, we present a thorough
mathematical analysis on the precise number of constraints required to express
the HCP and TSP Hamiltonians. This analysis, explains quantitatively why,
almost always, running incomplete graph instances requires more qubits than
complete instances. It turns out that incomplete graph require more quadratic
constraints than complete graphs, a fact that has been corroborated by a series
of experiments.
Related papers
- Increasing the Hardness of Posiform Planting Using Random QUBOs for Programmable Quantum Annealer Benchmarking [1.6385815610837167]
We investigate making posiform planted QUBOs computationally harder by fusing many smaller random discrete coefficient spin-glass Ising models.
We benchmark the capabilities of three D-Wave superconducting qubit quantum annealing processors.
We find that the D-Wave QPU ground-state sampling success rate does not change with respect to the size of the random QUBOs we employ.
arXiv Detail & Related papers (2024-11-06T02:46:33Z) - Evaluating Quantum Optimization for Dynamic Self-Reliant Community Detection [3.6021182997326022]
We formulate a Quadratic Unconstrained Binary Optimization (QUBO) problem suitable for solving using quantum computationcolorblue.
The formulation aims to find communities with maximal self-sufficiency and minimal power flowing between them.
We benchmark the solution quality for multiple approaches: D-Wave's hybrid quantum-classical solvers, classicals, and a branch-and-bound solver.
arXiv Detail & Related papers (2024-07-09T11:44:58Z) - An Analysis of Quantum Annealing Algorithms for Solving the Maximum Clique Problem [49.1574468325115]
We analyse the ability of quantum D-Wave annealers to find the maximum clique on a graph, expressed as a QUBO problem.
We propose a decomposition algorithm for the complementary maximum independent set problem, and a graph generation algorithm to control the number of nodes, the number of cliques, the density, the connectivity indices and the ratio of the solution size to the number of other nodes.
arXiv Detail & Related papers (2024-06-11T04:40:05Z) - Calculating response functions of coupled oscillators using quantum phase estimation [40.31060267062305]
We study the problem of estimating frequency response functions of systems of coupled, classical harmonic oscillators using a quantum computer.
Our proposed quantum algorithm operates in the standard $s-sparse, oracle-based query access model.
We show that a simple adaptation of our algorithm solves the random glued-trees problem in time.
arXiv Detail & Related papers (2024-05-14T15:28:37Z) - Quantum Semidefinite Programming with Thermal Pure Quantum States [0.5639904484784125]
We show that a quantization'' of the matrix multiplicative-weight algorithm can provide approximate solutions to SDPs quadratically faster than the best classical algorithms.
We propose a modification of this quantum algorithm and show that a similar speedup can be obtained by replacing the Gibbs-state sampler with the preparation of thermal pure quantum (TPQ) states.
arXiv Detail & Related papers (2023-10-11T18:00:53Z) - A Hybrid Quantum-Classical Approach to the Electric Mobility Problem [0.8796261172196743]
We suggest a hybrid quantum-classical routine for the NP-hard Electric Vehicle Fleet Charging and Allocation Problem.
We benchmark the performance of the decomposition technique with classical and quantum-inspired metaheuristics.
The major advantage of the proposed approach is that it enables quantum-based methods for this realistic problem with many inequality constraints.
arXiv Detail & Related papers (2023-10-04T12:14:56Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
We study the problem of designing worst-case to average-case reductions for quantum algorithms.
We provide an explicit and efficient transformation of quantum algorithms that are only correct on a small fraction of their inputs into ones that are correct on all inputs.
arXiv Detail & Related papers (2022-12-06T22:01:49Z) - End-to-end resource analysis for quantum interior point methods and portfolio optimization [63.4863637315163]
We provide a complete quantum circuit-level description of the algorithm from problem input to problem output.
We report the number of logical qubits and the quantity/depth of non-Clifford T-gates needed to run the algorithm.
arXiv Detail & Related papers (2022-11-22T18:54:48Z) - Complexity-Theoretic Limitations on Quantum Algorithms for Topological
Data Analysis [59.545114016224254]
Quantum algorithms for topological data analysis seem to provide an exponential advantage over the best classical approach.
We show that the central task of TDA -- estimating Betti numbers -- is intractable even for quantum computers.
We argue that an exponential quantum advantage can be recovered if the input data is given as a specification of simplices.
arXiv Detail & Related papers (2022-09-28T17:53:25Z) - Constrained mixers for the quantum approximate optimization algorithm [55.41644538483948]
We present a framework for constructing mixing operators that restrict the evolution to a subspace of the full Hilbert space.
We generalize the "XY"-mixer designed to preserve the subspace of "one-hot" states to the general case of subspaces given by a number of computational basis states.
Our analysis also leads to valid Trotterizations for "XY"-mixer with fewer CX gates than is known to date.
arXiv Detail & Related papers (2022-03-11T17:19:26Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
Multi-Object Tracking (MOT) is most often approached in the tracking-by-detection paradigm, where object detections are associated through time.
As these optimization problems are often NP-hard, they can only be solved exactly for small instances on current hardware.
We show that our approach is competitive compared with state-of-the-art optimization-based approaches, even when using of-the-shelf integer programming solvers.
arXiv Detail & Related papers (2022-02-17T18:59:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.