Numerical optimization of single-mode fiber-coupled single-photon
sources based on semiconductor quantum dots
- URL: http://arxiv.org/abs/2202.09562v1
- Date: Sat, 19 Feb 2022 09:57:16 GMT
- Title: Numerical optimization of single-mode fiber-coupled single-photon
sources based on semiconductor quantum dots
- Authors: Lucas Bremer, Carlos Jimenez, Simon Thiele, Ksenia Weber, Tobias
Huber, Sven Rodt, Alois Herkommer, Sven Burger, Sven H\"ofling, Harald
Giessen, Stephan Reitzenstein
- Abstract summary: We optimize photon extraction and fiber-coupling efficiency of quantum dot single-photon sources based on micromesas, microlenses, circular Bragg grating cavities and micropillars.
The numerical simulations which consider the entire system yield overall photon coupling efficiencies of up to 83%.
- Score: 0.27526105368539583
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We perform extended numerical studies to maximize the overall photon coupling
efficiency of fiber-coupled quantum dot single-photon sources emitting in the
near-infrared and telecom regime. Using the finite element method, we optimize
the photon extraction and fiber-coupling efficiency of quantum dot
single-photon sources based on micromesas, microlenses, circular Bragg grating
cavities and micropillars. The numerical simulations which consider the entire
system consisting of the quantum dot source itself, the coupling lens, and the
single-mode fiber yield overall photon coupling efficiencies of up to 83%. Our
work provides objectified comparability of different fiber-coupled
single-photon sources and proposes optimized geometries for the realization of
practical and highly efficient quantum dot single-photon sources.
Related papers
- A Fiber-pigtailed Quantum Dot Device Generating Indistinguishable Photons at GHz Clock-rates [0.507214623687214]
We present a fiber-pigtailed cavity-enhanced source of flying qubits emitting single indistinguishable photons at clock-rates exceeding 1 GHz.
Results show that fiber-pigtailed quantum light sources based on hCBG cavities are a prime candidate for applications of quantum information science.
arXiv Detail & Related papers (2024-09-13T16:55:36Z) - All-optical modulation with single-photons using electron avalanche [69.65384453064829]
We demonstrate all-optical modulation using a beam with single-photon intensity.
Our approach opens up the possibility of terahertz-speed optical switching at the single-photon level.
arXiv Detail & Related papers (2023-12-18T20:14:15Z) - Photonic quantum computing on thin-film lithium niobate: Part I Design
of an efficient heralded single photon source co-integrated with
superconducting detectors [0.0]
Photonic quantum computers are one of the primary candidates for fault-tolerant quantum computation.
To build a practical quantum computer, thousands to millions of such sources are required.
We propose a unique single-photon source design on a thin-film lithium niobate platform co-integrated with superconducting nanowire single-photon detectors.
arXiv Detail & Related papers (2023-11-15T21:51:12Z) - Shaping Single Photons through Multimode Optical Fibers using Mechanical
Perturbations [55.41644538483948]
We show an all-fiber approach for controlling the shape of single photons and the spatial correlations between entangled photon pairs.
We optimize these perturbations to localize the spatial distribution of a single photon or the spatial correlations of photon pairs in a single spot.
arXiv Detail & Related papers (2023-06-04T07:33:39Z) - Plug-and-play quantum devices with efficient fiber-quantum dot interface [0.02638512174804417]
We demonstrate a highly efficient fiber-interfacing photonic device that directly launches single photons from quantum dots into a standard FC/PC-connectorized single-mode fiber.
Our approach realizes a plug-and-play single-photon device that does not require any optical alignment and thus guarantees long-term stability.
arXiv Detail & Related papers (2022-02-26T12:27:42Z) - Efficient Source of Shaped Single Photons Based on an Integrated Diamond
Nanophotonic System [0.0]
An efficient source of shaped single photons can be directly integrated with optical fiber networks and quantum memories.
We demonstrate a deterministic source of arbitrarily temporally shaped single-photon pulses with high efficiency.
This system could be used as a resource for robust transmission and processing of quantum information.
arXiv Detail & Related papers (2022-01-08T02:12:24Z) - Telecom-band Hyperentangled Photon Pairs from a Fiber-based Source [49.06242674127539]
We experimentally demonstrate the generation of telecom-band biphotons hyperentangled in both the polarization and frequency DoFs.
The states produced by our hyperentanglement source can enable protocols such as dense coding and high-dimensional quantum key distribution.
arXiv Detail & Related papers (2021-12-06T21:37:43Z) - On-chip single-photon subtraction by individual silicon vacancy centers
in a laser-written diamond waveguide [48.7576911714538]
Laser-written diamond photonics offers three-dimensional fabrication capabilities and large mode-field diameters matched to fiber optic technology.
To realize large cooperativities, we combine excitation of single shallow-implanted silicon vacancy centers via large numerical aperture optics.
We demonstrate single-emitter extinction measurements with a cooperativity of 0.153 and a beta factor of 13% yielding 15.3% as lower bound for the quantum efficiency of a single emitter.
arXiv Detail & Related papers (2021-11-02T16:01:15Z) - Tunable quantum photonics platform based on fiber-cavity enhanced single
photon emission from two-dimensional hBN [52.915502553459724]
In this work we present a hybrid system consisting of defect centers in few-layer hBN grown by chemical vapor deposition and a fiber-based Fabry-Perot cavity.
We achieve very large cavity-assisted signal enhancement up to 50-fold and equally strong linewidth narrowing owing to cavity funneling.
Our work marks an important milestone for the deployment of 2D materials coupled to fiber-based cavities in practical quantum technologies.
arXiv Detail & Related papers (2020-06-23T14:20:46Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z) - Efficient fiber in-line single photon source based on colloidal single
quantum dots on an optical nanofiber [0.0]
We show that a charged state (trion) of the single quantum dot exhibits a photo-stable emission of single photons with high quantum efficiency.
The device can be easily integrated to the fiber networks paving the way for potential applications in quantum networks.
arXiv Detail & Related papers (2020-03-13T05:12:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.