Improved variational quantum eigensolver via quasi-dynamical evolution
- URL: http://arxiv.org/abs/2202.10130v3
- Date: Tue, 21 Mar 2023 13:37:03 GMT
- Title: Improved variational quantum eigensolver via quasi-dynamical evolution
- Authors: Manpreet Singh Jattana, Fengping Jin, Hans De Raedt, Kristel
Michielsen
- Abstract summary: The variational quantum eigensolver (VQE) is a hybrid quantum-classical algorithm designed for current and near-term quantum devices.
There are problems with VQE that forbid a favourable scaling towards quantum advantage.
We propose and extensively test a quantum annealing inspired algorithm that supplements VQE.
The improved VQE avoids barren plateaus, exits local minima, and works with low-depth circuits.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The variational quantum eigensolver (VQE) is a hybrid quantum-classical
algorithm designed for current and near-term quantum devices. Despite its
initial success, there is a lack of understanding involving several of its key
aspects. There are problems with VQE that forbid a favourable scaling towards
quantum advantage. In order to alleviate the problems, we propose and
extensively test a quantum annealing inspired heuristic that supplements VQE.
The improved VQE enables an efficient initial state preparation mechanism, in a
recursive manner, for a quasi-dynamical unitary evolution. We conduct an
in-depth scaling analysis of finding the ground state energies with increasing
lattice sizes of the Heisenberg model, employing simulations of up to $40$
qubits that manipulate the complete state vector. For the current devices, we
further propose a benchmarking toolkit using a mean-field model and test it on
IBM Q devices. The improved VQE avoids barren plateaus, exits local minima, and
works with low-depth circuits. Realistic gate execution times estimate a longer
computational time to complete the same computation on a fully functional
error-free quantum computer than on a quantum computer emulator implemented on
a classical computer. However, our proposal can be expected to help accurate
estimations of the ground state energies beyond $50$ qubits when the complete
state vector can no longer be stored on a classical computer, thus enabling
quantum advantage.
Related papers
- Efficient charge-preserving excited state preparation with variational quantum algorithms [33.03471460050495]
We introduce a charge-preserving VQD (CPVQD) algorithm, designed to incorporate symmetry and the corresponding conserved charge into the VQD framework.
Results show applications in high-energy physics, nuclear physics, and quantum chemistry.
arXiv Detail & Related papers (2024-10-18T10:30:14Z) - Subspace-Based Local Compilation of Variational Quantum Circuits for Large-Scale Quantum Many-Body Simulation [0.0]
This paper proposes a hybrid quantum-classical algorithm for compiling the time-evolution operator.
It achieves a 95% reduction in circuit depth compared to Trotterization while maintaining accuracy.
We estimate the gate count needed to execute the quantum simulations using the LSVQC on near-term quantum computing architectures.
arXiv Detail & Related papers (2024-07-19T09:50:01Z) - Non-unitary Coupled Cluster Enabled by Mid-circuit Measurements on Quantum Computers [37.69303106863453]
We propose a state preparation method based on coupled cluster (CC) theory, which is a pillar of quantum chemistry on classical computers.
Our approach leads to a reduction of the classical computation overhead, and the number of CNOT and T gates by 28% and 57% on average.
arXiv Detail & Related papers (2024-06-17T14:10:10Z) - Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
We present a model for parallelizing simulation of quantum circuit executions.
The model can take advantage of its backend-agnostic features, enabling parallel quantum circuit execution over any target backend.
arXiv Detail & Related papers (2024-06-05T17:16:07Z) - Nonlinear dynamics as a ground-state solution on quantum computers [39.58317527488534]
We present variational quantum algorithms (VQAs) that encode both space and time in qubit registers.
The spacetime encoding enables us to obtain the entire time evolution from a single ground-state computation.
arXiv Detail & Related papers (2024-03-25T14:06:18Z) - Sparse Quantum State Preparation for Strongly Correlated Systems [0.0]
In principle, the encoding of the exponentially scaling many-electron wave function onto a linearly scaling qubit register offers a promising solution to overcome the limitations of traditional quantum chemistry methods.
An essential requirement for ground state quantum algorithms to be practical is the initialisation of the qubits to a high-quality approximation of the sought-after ground state.
Quantum State Preparation (QSP) allows the preparation of approximate eigenstates obtained from classical calculations, but it is frequently treated as an oracle in quantum information.
arXiv Detail & Related papers (2023-11-06T18:53:50Z) - Greedy Gradient-free Adaptive Variational Quantum Algorithms on a Noisy
Intermediate Scale Quantum Computer [0.632231271751641]
Hybrid quantum-classical adaptive Variational Quantum Eigensolvers (VQE) hold the potential to outperform classical computing for quantum many-body systems.
New techniques to execute adaptive algorithms on a 25-qubit error-mitigated QPU to a GPU-accelerated HPC simulator are presented.
arXiv Detail & Related papers (2023-06-29T17:58:02Z) - QNEAT: Natural Evolution of Variational Quantum Circuit Architecture [95.29334926638462]
We focus on variational quantum circuits (VQC), which emerged as the most promising candidates for the quantum counterpart of neural networks.
Although showing promising results, VQCs can be hard to train because of different issues, e.g., barren plateau, periodicity of the weights, or choice of architecture.
We propose a gradient-free algorithm inspired by natural evolution to optimize both the weights and the architecture of the VQC.
arXiv Detail & Related papers (2023-04-14T08:03:20Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
Multi-Object Tracking (MOT) is most often approached in the tracking-by-detection paradigm, where object detections are associated through time.
As these optimization problems are often NP-hard, they can only be solved exactly for small instances on current hardware.
We show that our approach is competitive compared with state-of-the-art optimization-based approaches, even when using of-the-shelf integer programming solvers.
arXiv Detail & Related papers (2022-02-17T18:59:20Z) - A prescreening method for variational quantum state eigensolver [0.0]
We propose a method to derive all of the states with high accuracy by using the Variational Quantum State Eigensolver (VQSE) and Subspace-Search VQE (SSVQE) methods.
We show that by using the VQSE and the SSVQE prescreening methods, we can derive all of the hydrogen molecules states correctly.
arXiv Detail & Related papers (2021-11-03T18:13:33Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.