論文の概要: PointSCNet: Point Cloud Structure and Correlation Learning Based on Space Filling Curve-Guided Sampling
- arxiv url: http://arxiv.org/abs/2202.10251v2
- Date: Fri, 14 Jun 2024 15:25:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-19 13:36:52.700362
- Title: PointSCNet: Point Cloud Structure and Correlation Learning Based on Space Filling Curve-Guided Sampling
- Title(参考訳): PointSCNet:空間充填曲線サンプリングに基づく点雲構造と相関学習
- Authors: Xingye Chen, Yiqi Wu, Wenjie Xu, Jin Li, Huaiyi Dong, Yilin Chen,
- Abstract要約: 本稿では,PointSCNet と呼ばれるポイントクラウド特徴抽出ネットワークを提案する。
点雲の幾何学的構造情報と局所領域相関情報をキャプチャする。
実験の結果,PointSCNetは点雲の構造と相関を効果的に学習し,最先端の手法と同等あるいは同等であることがわかった。
- 参考スコア(独自算出の注目度): 9.051430628938592
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Geometrical structures and the internal local region relationship, such as symmetry, regular array, junction, etc., are essential for understanding a 3D shape. This paper proposes a point cloud feature extraction network named PointSCNet, to capture the geometrical structure information and local region correlation information of a point cloud. The PointSCNet consists of three main modules: the space-filling curve-guided sampling module, the information fusion module, and the channel-spatial attention module. The space-filling curve-guided sampling module uses Z-order curve coding to sample points that contain geometrical correlation. The information fusion module uses a correlation tensor and a set of skip connections to fuse the structure and correlation information. The channel-spatial attention module enhances the representation of key points and crucial feature channels to refine the network. The proposed PointSCNet is evaluated on shape classification and part segmentation tasks. The experimental results demonstrate that the PointSCNet outperforms or is on par with state-of-the-art methods by learning the structure and correlation of point clouds effectively.
- Abstract(参考訳): 幾何学的構造と対称性、正則配列、ジャンクションなどの内部局所領域関係は、3次元形状を理解するために不可欠である。
本稿では,点雲の幾何構造情報と局所領域相関情報を取得するために,ポイントSCNetと呼ばれる点雲特徴抽出ネットワークを提案する。
PointSCNetは、空間充填曲線誘導サンプリングモジュール、情報融合モジュール、チャネル空間注意モジュールの3つの主要なモジュールで構成されている。
空間充填曲線誘導サンプリングモジュールは、幾何相関を含むサンプル点にZ次曲線符号化を用いる。
情報融合モジュールは、相関テンソルと一連のスキップ接続を用いて構造と相関情報を融合する。
チャネル空間アテンションモジュールは、キーポイントと重要な特徴チャネルの表現を強化し、ネットワークを洗練させる。
提案するPointSCNetは形状分類と部分分割タスクに基づいて評価する。
実験の結果,PointSCNetは点雲の構造と相関を効果的に学習し,最先端の手法と同等あるいは同等であることがわかった。
関連論文リスト
- LoGDesc: Local geometric features aggregation for robust point cloud registration [4.888434990566421]
本稿では,3次元点マッチングと点雲登録のためのハイブリッドディスクリプタを提案する。
局所幾何学的性質と学習に基づく特徴伝搬を各点の近傍構造記述に結合する。
論文 参考訳(メタデータ) (2024-10-03T12:11:22Z) - Unsupervised Non-Rigid Point Cloud Matching through Large Vision Models [1.3030624795284795]
非剛点クラウドマッチングのための学習ベースのフレームワークを提案する。
重要な洞察は、大きな視覚モデル(LVM)から派生した意味的特徴を統合することである。
本フレームワークは,局所的な地形間の自己相似性から生じるあいまいさに対処するために,意味的特徴に含まれる構造情報を効果的に活用する。
論文 参考訳(メタデータ) (2024-08-16T07:02:19Z) - Local region-learning modules for point cloud classification [0.0]
本研究では,各中心点に対する適切なシフトを推定し,各局所領域の半径を変化させる2つの局所学習モジュールを提案する。
どちらのモジュールも独立して、PointNet++とPointCNNオブジェクト分類アーキテクチャに統合しました。
ShapeNetデータセットを用いた実験の結果,モジュールは3次元CADモデルにも有効であることがわかった。
論文 参考訳(メタデータ) (2023-03-30T12:45:46Z) - Adaptive Edge-to-Edge Interaction Learning for Point Cloud Analysis [118.30840667784206]
ポイントクラウドデータ処理の大きな問題は、ローカルリージョンから有用な情報を抽出することだ。
従来の研究は、局所的な形状情報を符号化する地域におけるエッジ間の関係を無視していた。
本稿では,Adaptive Edge-to-Edge Interaction Learningモジュールを提案する。
論文 参考訳(メタデータ) (2022-11-20T07:10:14Z) - Point cloud completion on structured feature map with feedback network [28.710494879042002]
本稿では,FSNetを提案する。FSNetは,ポイントワイドな特徴を適応的に2次元構造的特徴マップに集約できる機能構造化モジュールである。
2次元畳み込みニューラルネットワークを用いて、FSNetから粗い完全点クラウドに特徴マップをデコードする。
点雲アップサンプリングネットワークを用いて、部分入力と粗い中間出力から高密度点雲を生成する。
論文 参考訳(メタデータ) (2022-02-17T10:59:40Z) - PRA-Net: Point Relation-Aware Network for 3D Point Cloud Analysis [56.91758845045371]
我々はポイント関係認識ネットワーク(PRA-Net)という新しいフレームワークを提案する。
領域内構造学習(ISL)モジュールと領域間関係学習(IRL)モジュールで構成されている。
形状分類,キーポイント推定,部分セグメンテーションを含む複数の3次元ベンチマーク実験により,PRA-Netの有効性と性能が検証された。
論文 参考訳(メタデータ) (2021-12-09T13:24:43Z) - Deep Positional and Relational Feature Learning for Rotation-Invariant
Point Cloud Analysis [107.9979381402172]
点雲解析のための回転不変深層ネットワークを提案する。
ネットワークは階層的であり、位置的特徴埋め込みブロックと関係的特徴埋め込みブロックという2つのモジュールに依存している。
実験では、ベンチマークデータセット上で最先端の分類とセグメンテーション性能を示す。
論文 参考訳(メタデータ) (2020-11-18T04:16:51Z) - Refinement of Predicted Missing Parts Enhance Point Cloud Completion [62.997667081978825]
点雲完了は、部分的な観測から3次元形状の点集合表現を用いて完全な幾何学を予測するタスクである。
従来のアプローチでは、不完全点集合によって供給されるエンコーダ・デコーダモデルにより、点雲全体を直接推定するニューラルネットワークが提案されていた。
本稿では、欠落した幾何を計算し、既知の入力と予測点クラウドを融合することに焦点を当てたエンドツーエンドニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-10-08T22:01:23Z) - ASAP-Net: Attention and Structure Aware Point Cloud Sequence
Segmentation [49.15948235059343]
我々は、ASAPと呼ばれるフレキシブルモジュールにより、ポイントテンポラルクラウド機能をさらに改善する。
我々のASAPモジュールは、フレーム間の比較的情報性の高い局所的特徴を連続的に融合させるために、注意深い時間的埋め込み層を含んでいる。
本稿では、ポイントクラウドシーケンシャルセグメンテーションのための異なる計算バックボーンネットワークを持つASAPモジュールの一般化能力を示す。
論文 参考訳(メタデータ) (2020-08-12T07:37:16Z) - Shape-Oriented Convolution Neural Network for Point Cloud Analysis [59.405388577930616]
ポイントクラウドは3次元幾何学情報符号化に採用されている主要なデータ構造である。
形状指向型メッセージパッシング方式であるShapeConvを提案する。
論文 参考訳(メタデータ) (2020-04-20T16:11:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。