論文の概要: A Tutorial on Adversarial Learning Attacks and Countermeasures
- arxiv url: http://arxiv.org/abs/2202.10377v1
- Date: Mon, 21 Feb 2022 17:14:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2022-02-23 11:07:26.024778
- Title: A Tutorial on Adversarial Learning Attacks and Countermeasures
- Title(参考訳): 対人学習攻撃と対策に関するチュートリアル
- Authors: Cato Pauling, Michael Gimson, Muhammed Qaid, Ahmad Kida and Basel
Halak
- Abstract要約: 機械学習モデルは、それを明示的にプログラムすることなく、高精度な予測を行うことができる。
敵の学習攻撃は 深刻なセキュリティの脅威を 引き起こす
本稿では、敵対的学習の原理を詳細に解説し、異なる攻撃シナリオを説明し、この脅威に対する最先端の防御機構について深い洞察を与える。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning algorithms are used to construct a mathematical model for a
system based on training data. Such a model is capable of making highly
accurate predictions without being explicitly programmed to do so. These
techniques have a great many applications in all areas of the modern digital
economy and artificial intelligence. More importantly, these methods are
essential for a rapidly increasing number of safety-critical applications such
as autonomous vehicles and intelligent defense systems. However, emerging
adversarial learning attacks pose a serious security threat that greatly
undermines further such systems. The latter are classified into four types,
evasion (manipulating data to avoid detection), poisoning (injection malicious
training samples to disrupt retraining), model stealing (extraction), and
inference (leveraging over-generalization on training data). Understanding this
type of attacks is a crucial first step for the development of effective
countermeasures. The paper provides a detailed tutorial on the principles of
adversarial machining learning, explains the different attack scenarios, and
gives an in-depth insight into the state-of-art defense mechanisms against this
rising threat .
- Abstract(参考訳): 機械学習アルゴリズムは、トレーニングデータに基づくシステムの数学的モデルを構築するために使用される。
このようなモデルは、明示的にプログラムされることなく、高精度な予測を行うことができる。
これらの技術は、現代のデジタル経済と人工知能のあらゆる分野に多くの応用がある。
さらに重要なことに、これらの手法は、自動運転車やインテリジェント防衛システムなど、急速に多くの安全クリティカルな応用に不可欠である。
しかし、新たな敵対的学習攻撃は深刻なセキュリティ上の脅威となり、こうしたシステムがさらに悪化する。
後者は、回避(検出を避けるためにデータを操作)、中毒(再トレーニングを妨害する悪意のあるトレーニングサンプルの注入)、モデルの盗み(抽出)、推論(トレーニングデータのオーバージェネライゼーション)の4つのタイプに分類される。
この種の攻撃を理解することは、効果的な対策を開発するための重要な第一歩である。
この論文は、敵対的加工学習の原則に関する詳細なチュートリアルを提供し、さまざまな攻撃シナリオを説明し、この上昇する脅威に対する最先端の防御メカニズムに関する深い洞察を提供する。
関連論文リスト
- Leveraging Generalizability of Image-to-Image Translation for Enhanced Adversarial Defense [2.441856543314551]
敵対的攻撃は、機械学習モデルの重大な脆弱性を浮き彫りにする。
本研究では,残差ブロックを組み込んで一般化性を高める改良モデルを提案する。
実験の結果,分類精度は0付近から平均72%に復元できることがわかった。
論文 参考訳(メタデータ) (2025-04-02T06:38:28Z) - Adversarial Training for Defense Against Label Poisoning Attacks [53.893792844055106]
ラベル中毒攻撃は機械学習モデルに重大なリスクをもたらす。
本稿では,これらの脅威に対処するために,サポートベクトルマシン(SVM)に基づく新たな対角的防御戦略を提案する。
提案手法は, 様々なモデルアーキテクチャに対応し, カーネルSVMを用いた予測勾配降下アルゴリズムを用いて, 対向学習を行う。
論文 参考訳(メタデータ) (2025-02-24T13:03:19Z) - A Survey of Model Extraction Attacks and Defenses in Distributed Computing Environments [55.60375624503877]
モデル抽出攻撃(MEA)は、敵がモデルを盗み、知的財産と訓練データを公開することによって、現代の機械学習システムを脅かす。
この調査は、クラウド、エッジ、フェデレーションのユニークな特性がどのように攻撃ベクトルや防御要件を形作るのかを、緊急に理解する必要に起因している。
本研究は, 自動運転車, 医療, 金融サービスといった重要な分野において, 環境要因がセキュリティ戦略にどう影響するかを実証し, 攻撃手法と防衛機構の進化を系統的に検討する。
論文 参考訳(メタデータ) (2025-02-22T03:46:50Z) - Adversarial Attacks and Defenses in Machine Learning-Powered Networks: A
Contemporary Survey [114.17568992164303]
機械学習とディープニューラルネットワークにおけるアドリアックと防御が注目されている。
本調査は、敵攻撃・防衛技術分野における最近の進歩を包括的に概観する。
検索ベース、意思決定ベース、ドロップベース、物理世界攻撃など、新たな攻撃方法も検討されている。
論文 参考訳(メタデータ) (2023-03-11T04:19:31Z) - I Know What You Trained Last Summer: A Survey on Stealing Machine
Learning Models and Defences [0.1031296820074812]
本研究では,モデル盗難攻撃について検討し,その性能を評価し,異なる環境で対応する防御技術を探究する。
攻撃・防衛アプローチのための分類法を提案し,目標と利用可能な資源に基づいて適切な攻撃・防衛を選択する方法に関するガイドラインを提供する。
論文 参考訳(メタデータ) (2022-06-16T21:16:41Z) - Btech thesis report on adversarial attack detection and purification of
adverserially attacked images [0.0]
本論文は, 負の攻撃を受けた画像の検出と浄化に関するものである。
ディープラーニングモデルは、分類、回帰などの様々なタスクのための特定のトレーニング例に基づいて訓練される。
論文 参考訳(メタデータ) (2022-05-09T09:24:11Z) - A Review of Adversarial Attack and Defense for Classification Methods [78.50824774203495]
本稿では,敵対的事例の生成と保護に焦点をあてる。
この論文は、多くの統計学者が、この重要かつエキサイティングな分野において、敵の事例を生成・防御することを奨励するものである。
論文 参考訳(メタデータ) (2021-11-18T22:13:43Z) - Automating Privilege Escalation with Deep Reinforcement Learning [71.87228372303453]
本研究では,エージェントの訓練に深層強化学習を用いることで,悪意あるアクターの潜在的な脅威を実証する。
本稿では,最先端の強化学習アルゴリズムを用いて,局所的な特権エスカレーションを行うエージェントを提案する。
我々のエージェントは、実際の攻撃センサーデータを生成し、侵入検知システムの訓練と評価に利用できる。
論文 参考訳(メタデータ) (2021-10-04T12:20:46Z) - Launching Adversarial Attacks against Network Intrusion Detection
Systems for IoT [5.077661193116692]
テクノロジーは、セキュリティが後発である利益主導のモノのインターネット市場にシフトしています。
従来の防御アプローチは、既知の攻撃と未知の攻撃の両方を高精度に検出するのに十分ではない。
機械学習による侵入検知システムは、未知の攻撃を高精度に特定することに成功した。
論文 参考訳(メタデータ) (2021-04-26T09:36:29Z) - Dataset Security for Machine Learning: Data Poisoning, Backdoor Attacks,
and Defenses [150.64470864162556]
この作業は体系的に分類され、幅広いデータセット脆弱性とエクスプロイトを議論する。
様々な毒とバックドアの脅威モデルとそれらの関係を記述することに加えて,それらの統一分類法を展開する。
論文 参考訳(メタデータ) (2020-12-18T22:38:47Z) - An Empirical Review of Adversarial Defenses [0.913755431537592]
このようなシステムの基礎を形成するディープニューラルネットワークは、敵対攻撃と呼ばれる特定のタイプの攻撃に非常に影響を受けやすい。
ハッカーは、最小限の計算でも、敵対的な例(他のクラスに属するイメージやデータポイント)を生成し、そのようなアルゴリズムの基礎を崩壊させることができます。
本稿では,DropoutとDenoising Autoencodersの2つの効果的な手法を示し,そのような攻撃がモデルを騙すのを防ぐことに成功したことを示す。
論文 参考訳(メタデータ) (2020-12-10T09:34:41Z) - A Generative Model based Adversarial Security of Deep Learning and
Linear Classifier Models [0.0]
我々は,オートエンコーダモデルを用いた機械学習モデルに対する敵攻撃の軽減手法を提案する。
機械学習モデルに対する敵対的攻撃の背後にある主な考え方は、トレーニングされたモデルを操作することによって誤った結果を生成することである。
また、ディープニューラルネットワークから従来のアルゴリズムに至るまで、様々な攻撃手法に対するオートエンコーダモデルの性能についても紹介した。
論文 参考訳(メタデータ) (2020-10-17T17:18:17Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
本稿では,機械学習技術に基づくセキュリティソリューションに対する敵攻撃に関する最新の研究を要約する。
サイバーセキュリティドメインでエンドツーエンドの敵攻撃を実装するという、ユニークな課題を議論するのは、これが初めてである。
論文 参考訳(メタデータ) (2020-07-05T18:22:40Z) - Adversarial Attacks on Machine Learning Systems for High-Frequency
Trading [55.30403936506338]
逆機械学習の観点から,アルゴリズム取引のバリュエーションモデルについて検討する。
攻撃コストを最小限に抑えるサイズ制約で、このドメインに特有の新たな攻撃を導入する。
本稿では、金融モデルのロバスト性について研究・評価するための分析ツールとして、これらの攻撃がどのように利用できるかについて論じる。
論文 参考訳(メタデータ) (2020-02-21T22:04:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。