A Novel Anomaly Detection Method for Multimodal WSN Data Flow via a
Dynamic Graph Neural Network
- URL: http://arxiv.org/abs/2202.10454v1
- Date: Sat, 19 Feb 2022 12:32:05 GMT
- Title: A Novel Anomaly Detection Method for Multimodal WSN Data Flow via a
Dynamic Graph Neural Network
- Authors: Qinghao Zhang and Miao Ye and Hongbing Qiu and Yong Wang and Xiaofang
Deng
- Abstract summary: Anomaly detection is widely used to distinguish system anomalies by analyzing the temporal and spatial features of wireless sensor network (WSN) data streams.
Three graph neural networks (GNNs) are used to separately extract the temporal features of WSN data flows.
The temporal features and modal correlation features extracted from each sensor node are fused into one vector representation.
The current time-series data of WSN nodes are predicted, and abnormal states are identified according to the fusion features.
- Score: 4.383559317152992
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anomaly detection is widely used to distinguish system anomalies by analyzing
the temporal and spatial features of wireless sensor network (WSN) data
streams; it is one of critical technique that ensures the reliability of WSNs.
Currently, graph neural networks (GNNs) have become popular state-of-the-art
methods for conducting anomaly detection on WSN data streams. However, the
existing anomaly detection methods based on GNNs do not consider the temporal
and spatial features of WSN data streams simultaneously, such as multi-node,
multi-modal and multi-time features, seriously impacting their effectiveness.
In this paper, a novel anomaly detection model is proposed for multimodal WSN
data flows, where three GNNs are used to separately extract the temporal
features of WSN data flows, the correlation features between different modes
and the spatial features between sensor node positions. Specifically, first,
the temporal features and modal correlation features extracted from each sensor
node are fused into one vector representation, which is further aggregated with
the spatial features, i.e., the spatial position relationships of the nodes;
finally, the current time-series data of WSN nodes are predicted, and abnormal
states are identified according to the fusion features. The simulation results
obtained on a public dataset show that the proposed approach is able to
significantly improve upon the existing methods in terms of its robustness, and
its F1 score reaches 0.90, which is 14.2% higher than that of the graph
convolution network (GCN) with long short-term memory (LSTM).
Related papers
- Signal-SGN: A Spiking Graph Convolutional Network for Skeletal Action Recognition via Learning Temporal-Frequency Dynamics [2.9578022754506605]
In skeletal-based action recognition, Graph Convolutional Networks (GCNs) face limitations due to their complexity and high energy consumption.
We propose a Signal-SGN(Spiking Graph Convolutional Network), which leverages the temporal dimension of skeletal sequences as the spiking timestep.
Our experiments show that the proposed models not only surpass existing SNN-based methods in accuracy but also reduce computational storage costs during training.
arXiv Detail & Related papers (2024-08-03T07:47:16Z) - Temporal and Heterogeneous Graph Neural Network for Remaining Useful Life Prediction [27.521188262343596]
We introduce a novel model named Temporal and Heterogeneous Graph Neural Networks (THGNN)
THGNN aggregates historical data from neighboring nodes to accurately capture the temporal dynamics and spatial correlations within the stream of sensor data.
We have validated the effectiveness of our approach through comprehensive experiments.
arXiv Detail & Related papers (2024-05-07T14:08:57Z) - Fully-Connected Spatial-Temporal Graph for Multivariate Time-Series Data [50.84488941336865]
We propose a novel method called Fully- Spatial-Temporal Graph Neural Network (FC-STGNN)
For graph construction, we design a decay graph to connect sensors across all timestamps based on their temporal distances.
For graph convolution, we devise FC graph convolution with a moving-pooling GNN layer to effectively capture the ST dependencies for learning effective representations.
arXiv Detail & Related papers (2023-09-11T08:44:07Z) - Correlation-aware Spatial-Temporal Graph Learning for Multivariate
Time-series Anomaly Detection [67.60791405198063]
We propose a correlation-aware spatial-temporal graph learning (termed CST-GL) for time series anomaly detection.
CST-GL explicitly captures the pairwise correlations via a multivariate time series correlation learning module.
A novel anomaly scoring component is further integrated into CST-GL to estimate the degree of an anomaly in a purely unsupervised manner.
arXiv Detail & Related papers (2023-07-17T11:04:27Z) - Temporal Aggregation and Propagation Graph Neural Networks for Dynamic
Representation [67.26422477327179]
Temporal graphs exhibit dynamic interactions between nodes over continuous time.
We propose a novel method of temporal graph convolution with the whole neighborhood.
Our proposed TAP-GNN outperforms existing temporal graph methods by a large margin in terms of both predictive performance and online inference latency.
arXiv Detail & Related papers (2023-04-15T08:17:18Z) - It is all Connected: A New Graph Formulation for Spatio-Temporal
Forecasting [1.278093617645299]
We propose a framework for learning temporal and spatial dependencies using Graph Neural Network (GNN) networks.
GNNs represent every sample as its own node in a graph, rather than all measurements for a particular location as a single node.
The framework does not require measurements along the temporal dimension, meaning that it also facilitates irregular time series, different frequencies or missing data, without the need for data sampling imputation.
arXiv Detail & Related papers (2023-03-23T11:16:33Z) - A Novel Self-Supervised Learning-Based Anomaly Node Detection Method
Based on an Autoencoder in Wireless Sensor Networks [4.249028315152528]
In this paper, a self-supervised learning-based anomaly node detection method based on an autoencoder is designed.
This method integrates temporal WSN data flow feature extraction, spatial position feature extraction and intermodal WSN correlation feature extraction.
Experiments show that the designed method outperforms the baselines, and the F1 score reaches 90.6%.
arXiv Detail & Related papers (2022-12-26T01:54:02Z) - Deep Federated Anomaly Detection for Multivariate Time Series Data [93.08977495974978]
We present a Federated Exemplar-based Deep Neural Network (Fed-ExDNN) to conduct anomaly detection for multivariate time series data on different edge devices.
We show that ExDNN and Fed-ExDNN can outperform state-of-the-art anomaly detection algorithms and federated learning techniques.
arXiv Detail & Related papers (2022-05-09T05:06:58Z) - Space-Time Graph Neural Networks [104.55175325870195]
We introduce space-time graph neural network (ST-GNN) to jointly process the underlying space-time topology of time-varying network data.
Our analysis shows that small variations in the network topology and time evolution of a system does not significantly affect the performance of ST-GNNs.
arXiv Detail & Related papers (2021-10-06T16:08:44Z) - Spatial Aggregation and Temporal Convolution Networks for Real-time
Kriging [3.4386226615580107]
SATCN is a universal and flexible framework to performtemporal kriging for various datasets without need for model specification.
We capture nodes by temporal convolutional networks, which allows our model to cope with data of diverse sizes.
We conduct extensive experiments on three real-world datasets, including traffic and climate recordings.
arXiv Detail & Related papers (2021-09-24T18:43:07Z) - Structural Temporal Graph Neural Networks for Anomaly Detection in
Dynamic Graphs [54.13919050090926]
We propose an end-to-end structural temporal Graph Neural Network model for detecting anomalous edges in dynamic graphs.
In particular, we first extract the $h$-hop enclosing subgraph centered on the target edge and propose the node labeling function to identify the role of each node in the subgraph.
Based on the extracted features, we utilize Gated recurrent units (GRUs) to capture the temporal information for anomaly detection.
arXiv Detail & Related papers (2020-05-15T09:17:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.