Translational Quantum Machine Intelligence for Modeling Tumor Dynamics
in Oncology
- URL: http://arxiv.org/abs/2202.10919v3
- Date: Sat, 7 Jan 2023 13:43:12 GMT
- Title: Translational Quantum Machine Intelligence for Modeling Tumor Dynamics
in Oncology
- Authors: Nam Nguyen and Kwang-Cheng Chen
- Abstract summary: Quantum Machine Intelligence offers unparalleled insights into tumor dynamics via a quantum mechanics perspective.
We introduce a novel hybrid quantum-classical neural architecture named $eta-$Net that enables quantifying quantum dynamics of tumor burden concerning treatment effects.
- Score: 18.069876260017605
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantifying the dynamics of tumor burden reveals useful information about
cancer evolution concerning treatment effects and drug resistance, which play a
crucial role in advancing model-informed drug developments (MIDD) towards
personalized medicine and precision oncology. The emergence of Quantum Machine
Intelligence offers unparalleled insights into tumor dynamics via a quantum
mechanics perspective. This paper introduces a novel hybrid quantum-classical
neural architecture named $\eta-$Net that enables quantifying quantum dynamics
of tumor burden concerning treatment effects. We evaluate our proposed neural
solution on two major use cases, including cohort-specific and patient-specific
modeling. In silico numerical results show a high capacity and expressivity of
$\eta-$Net to the quantified biological problem. Moreover, the close connection
to representation learning - the foundation for successes of modern AI, enables
efficient transferability of empirical knowledge from relevant cohorts to
targeted patients. Finally, we leverage Bayesian optimization to quantify the
epistemic uncertainty of model predictions, paving the way for $\eta-$Net
towards reliable AI in decision-making for clinical usages.
Related papers
- NOBLE -- Neural Operator with Biologically-informed Latent Embeddings to Capture Experimental Variability in Biological Neuron Models [68.89389652724378]
NOBLE is a neural operator framework that learns a mapping from a continuous frequency-modulated embedding of interpretable neuron features to the somatic voltage response induced by current injection.<n>It predicts distributions of neural dynamics accounting for the intrinsic experimental variability.<n>NOBLE is the first scaled-up deep learning framework validated on real experimental data.
arXiv Detail & Related papers (2025-06-05T01:01:18Z) - Medical World Model: Generative Simulation of Tumor Evolution for Treatment Planning [50.16114813279694]
We introduce the Medical World Model (MeWM), the first world model in medicine that visually predicts future disease states based on clinical decisions.<n>MeWM comprises (i) vision-language models to serve as policy models, and (ii) tumor generative models as dynamics models.<n>We propose the inverse dynamics model that applies survival analysis to the simulated post-treatment tumor, enabling the evaluation of treatment efficacy and the selection of the optimal clinical action plan.
arXiv Detail & Related papers (2025-06-02T23:50:40Z) - Patient-specific prediction of glioblastoma growth via reduced order modeling and neural networks [0.0]
We present a proof-of-concept for a mathematical model of GBL growth, enabling real-time prediction and patient-specific parameter identification.
A neural network surrogate learns the inverse mapping from tumor evolution to model parameters, achieving significant computational speed-up.
arXiv Detail & Related papers (2024-12-04T18:46:05Z) - Leveraging Pre-Trained Neural Networks to Enhance Machine Learning with Variational Quantum Circuits [48.33631905972908]
We introduce an innovative approach that utilizes pre-trained neural networks to enhance Variational Quantum Circuits (VQC)
This technique effectively separates approximation error from qubit count and removes the need for restrictive conditions.
Our results extend to applications such as human genome analysis, demonstrating the broad applicability of our approach.
arXiv Detail & Related papers (2024-11-13T12:03:39Z) - Physics-Regularized Multi-Modal Image Assimilation for Brain Tumor Localization [3.666412718346211]
We introduce a novel method that integrates data-driven and physics-based cost functions.
We propose a unique discretization scheme that quantifies how well the learned distributions of tumor and brain tissues adhere to their respective growth and elasticity equations.
arXiv Detail & Related papers (2024-09-30T15:36:14Z) - Exploring Biological Neuronal Correlations with Quantum Generative Models [0.0]
We introduce a quantum generative model framework for generating synthetic data that captures the spatial and temporal correlations of biological neuronal activity.
Our model demonstrates the ability to achieve reliable outcomes with fewer trainable parameters compared to classical methods.
arXiv Detail & Related papers (2024-09-13T18:00:06Z) - Variational and Explanatory Neural Networks for Encoding Cancer Profiles and Predicting Drug Responses [40.80133767939435]
Existing AI models face challenges due to noise in transcriptomics data and lack of biological interpretability.
We introduce VETE, a novel neural network framework that incorporates a variational component to mitigate noise effects.
VETE bridges the gap between AI-driven predictions and biologically meaningful insights in cancer research.
arXiv Detail & Related papers (2024-07-05T13:13:02Z) - Brain Tumor Diagnosis Using Quantum Convolutional Neural Networks [0.0]
This research details a high-precision design and execution of a QCNN model specifically tailored to identify and classify brain cancer images.
Our proposed QCNN architecture and algorithm have achieved an exceptional classification accuracy of 99.67%, demonstrating the model's potential as a powerful tool for clinical applications.
arXiv Detail & Related papers (2024-01-28T23:27:06Z) - Integration of Graph Neural Network and Neural-ODEs for Tumor Dynamic Prediction [4.850774880198265]
We propose a graph encoder that utilizes a bipartite Graph Convolutional Neural network (GCN) combined with Neural Ordinary Differential Equations (Neural-ODEs)
We first show that the methodology is able to discover a tumor dynamic model that significantly improves upon an empirical model.
Our findings indicate that the methodology holds significant promise and offers potential applications in pre-clinical settings.
arXiv Detail & Related papers (2023-10-02T06:39:08Z) - Explainable Deep Learning for Tumor Dynamic Modeling and Overall
Survival Prediction using Neural-ODE [0.0]
We propose the use of Tumor Dynamic Neural-ODE as a pharmacology-informed neural network.
We show that TDNODE overcomes a key limitation of existing models in its ability to make unbiased predictions from truncated data.
We show that the generated metrics can be used to predict patients' overall survival (OS) with high accuracy.
arXiv Detail & Related papers (2023-08-02T18:08:27Z) - The Expressive Leaky Memory Neuron: an Efficient and Expressive Phenomenological Neuron Model Can Solve Long-Horizon Tasks [64.08042492426992]
We introduce the Expressive Memory (ELM) neuron model, a biologically inspired model of a cortical neuron.
Our ELM neuron can accurately match the aforementioned input-output relationship with under ten thousand trainable parameters.
We evaluate it on various tasks with demanding temporal structures, including the Long Range Arena (LRA) datasets.
arXiv Detail & Related papers (2023-06-14T13:34:13Z) - Conditional Generative Models for Simulation of EMG During Naturalistic
Movements [45.698312905115955]
We present a conditional generative neural network trained adversarially to generate motor unit activation potential waveforms.
We demonstrate the ability of such a model to predictively interpolate between a much smaller number of numerical model's outputs with a high accuracy.
arXiv Detail & Related papers (2022-11-03T14:49:02Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Quantum-tailored machine-learning characterization of a superconducting
qubit [50.591267188664666]
We develop an approach to characterize the dynamics of a quantum device and learn device parameters.
This approach outperforms physics-agnostic recurrent neural networks trained on numerically generated and experimental data.
This demonstration shows how leveraging domain knowledge improves the accuracy and efficiency of this characterization task.
arXiv Detail & Related papers (2021-06-24T15:58:57Z) - Integrating Expert ODEs into Neural ODEs: Pharmacology and Disease
Progression [71.7560927415706]
latent hybridisation model (LHM) integrates a system of expert-designed ODEs with machine-learned Neural ODEs to fully describe the dynamics of the system.
We evaluate LHM on synthetic data as well as real-world intensive care data of COVID-19 patients.
arXiv Detail & Related papers (2021-06-05T11:42:45Z) - Neuro-symbolic Neurodegenerative Disease Modeling as Probabilistic
Programmed Deep Kernels [93.58854458951431]
We present a probabilistic programmed deep kernel learning approach to personalized, predictive modeling of neurodegenerative diseases.
Our analysis considers a spectrum of neural and symbolic machine learning approaches.
We run evaluations on the problem of Alzheimer's disease prediction, yielding results that surpass deep learning.
arXiv Detail & Related papers (2020-09-16T15:16:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.