論文の概要: Subtyping brain diseases from imaging data
- arxiv url: http://arxiv.org/abs/2202.10945v1
- Date: Wed, 16 Feb 2022 19:13:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-27 20:11:36.498542
- Title: Subtyping brain diseases from imaging data
- Title(参考訳): 画像データによる脳疾患のサブタイプ
- Authors: Junhao Wen, Erdem Varol, Zhijian Yang, Gyujoon Hwang, Dominique Dwyer,
Anahita Fathi Kazerooni, Paris Alexandros Lalousis, Christos Davatzikos
- Abstract要約: 臨床神経科学と癌画像学は、機械学習が特に有望な分野である。
現在の章では、病気のサブタイプを求めるML手法、特に半教師付きクラスタリングに焦点を当てている。
アルツハイマー病とその病期、精神病、うつ病、自閉症、脳がんについて論じる。
- 参考スコア(独自算出の注目度): 3.5849534055078767
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The imaging community has increasingly adopted machine learning (ML) methods
to provide individualized imaging signatures related to disease diagnosis,
prognosis, and response to treatment. Clinical neuroscience and cancer imaging
have been two areas in which ML has offered particular promise. However, many
neurologic and neuropsychiatric diseases, as well as cancer, are often
heterogeneous in terms of their clinical manifestations, neuroanatomical
patterns or genetic underpinnings. Therefore, in such cases, seeking a single
disease signature might be ineffectual in delivering individualized precision
diagnostics. The current chapter focuses on ML methods, especially
semi-supervised clustering, that seek disease subtypes using imaging data. Work
from Alzheimer Disease and its prodromal stages, psychosis, depression, autism,
and brain cancer are discussed. Our goal is to provide the readers with a broad
overview in terms of methodology and clinical applications.
- Abstract(参考訳): イメージングコミュニティは、病気の診断、予後、治療に対する反応に関連する個別化された画像署名を提供するために、機械学習(ML)メソッドをますます採用している。
臨床神経科学と癌画像学は、MLが特に約束している2つの領域である。
しかし、多くの神経学的・神経精神医学的疾患は、がんと同様に、臨床症状、神経解剖学的パターン、遺伝的基盤の点で異種であることが多い。
したがって、そのような場合、単一疾患の徴候を求めることは、個別の精度診断を行うのに効果がない可能性がある。
本章では、画像データを用いた疾患サブタイプを求めるml手法、特に半教師付きクラスタリングに焦点を当てる。
アルツハイマー病とその予防段階、精神病、うつ病、自閉症、脳がんの研究について論じる。
私たちの目標は、方法論と臨床応用の観点から、読者に幅広い概要を提供することです。
関連論文リスト
- Early diagnosis of Alzheimer's disease from MRI images with deep learning model [0.7673339435080445]
アルツハイマー病は世界中で認知症の最も一般的な原因である。
認知症の分類には、医学的履歴レビュー、神経心理学的テスト、MRI(MRI)などのアプローチが含まれる
本稿では,AD画像から重要な特徴を抽出するために,事前学習した畳み込みニューラルネットワークをDEMNET認知ネットワークに適用する。
論文 参考訳(メタデータ) (2024-09-27T15:07:26Z) - Potential of Multimodal Large Language Models for Data Mining of Medical Images and Free-text Reports [51.45762396192655]
特にGemini-Vision-Series (Gemini) と GPT-4-Series (GPT-4) は、コンピュータビジョンのための人工知能のパラダイムシフトを象徴している。
本研究は,14の医用画像データセットを対象に,Gemini,GPT-4,および4つの一般的な大規模モデルの性能評価を行った。
論文 参考訳(メタデータ) (2024-07-08T09:08:42Z) - Dimensional Neuroimaging Endophenotypes: Neurobiological Representations
of Disease Heterogeneity Through Machine Learning [11.653182438505558]
まず、機械学習とマルチモーダルMRIを用いて、様々な神経精神・神経変性疾患における疾患の多様性を解明する研究の体系的な概要を述べる。
次に、関連する機械学習手法を要約し、DNEと呼ばれる新しいパラダイムについて議論する。
DNEは神経精神医学および神経変性疾患の神経生物学的不均一性を低次元で情報的かつ定量的な脳表現表現に識別する。
論文 参考訳(メタデータ) (2024-01-17T16:31:48Z) - GestaltMML: Enhancing Rare Genetic Disease Diagnosis through Multimodal Machine Learning Combining Facial Images and Clinical Texts [8.805728428427457]
本稿では,Transformerアーキテクチャのみに基づくマルチモーダル機械学習(MML)アプローチを提案する。
顔画像、人口統計情報(年齢、性別、民族)、臨床メモを統合して予測精度を向上させる。
論文 参考訳(メタデータ) (2023-12-23T18:40:25Z) - Can GPT-4V(ision) Serve Medical Applications? Case Studies on GPT-4V for
Multimodal Medical Diagnosis [59.35504779947686]
GPT-4VはOpenAIの最新のマルチモーダル診断モデルである。
評価対象は17の人体システムである。
GPT-4Vは、医用画像のモダリティと解剖学を区別する能力を示す。
疾患の診断と包括的報告作成において重大な課題に直面している。
論文 参考訳(メタデータ) (2023-10-15T18:32:27Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
我々はUniBrainと呼ばれるユニバーサル脳MRI診断のための階層的知識強化事前訓練フレームワークを提案する。
具体的には、UniBrainは、定期的な診断から24,770のイメージレポートペアの大規模なデータセットを活用する。
論文 参考訳(メタデータ) (2023-09-13T09:22:49Z) - Deep grading for MRI-based differential diagnosis of Alzheimer's disease
and Frontotemporal dementia [0.0]
アルツハイマー病と前頭側頭性認知症は神経変性性認知症の一般的な形態である。
現在の構造イメージングは、主に疾患の検出に焦点をあてるが、その鑑別診断にはほとんど焦点を当てない。
本稿では,疾患検出と鑑別診断の両問題に対するディープラーニングに基づくアプローチを提案する。
論文 参考訳(メタデータ) (2022-11-25T13:25:18Z) - Interpretable Graph Convolutional Network of Multi-Modality Brain
Imaging for Alzheimer's Disease Diagnosis [14.894215698742924]
本稿では,アルツハイマー病の同定と分類のための解釈可能なグラフ畳み込みネットワークフレームワークを提案する。
我々はGrad-CAM法を用いて、GCNが同定した最も差別的な特徴を脳接続パターンから定量化した。
論文 参考訳(メタデータ) (2022-04-27T20:43:11Z) - SpineOne: A One-Stage Detection Framework for Degenerative Discs and
Vertebrae [54.751251046196494]
SpineOneと呼ばれる一段階検出フレームワークを提案し、MRIスライスから変性椎骨と椎骨を同時に局在化・分類する。
1)キーポイントの局所化と分類を促進するためのキーポイント・ヒートマップの新しい設計、2)ディスクと脊椎の表現をよりよく区別するためのアテンション・モジュールの使用、3)後期訓練段階における複数の学習目標を関連付けるための新しい勾配誘導客観的アソシエーション機構。
論文 参考訳(メタデータ) (2021-10-28T12:59:06Z) - Malignancy Prediction and Lesion Identification from Clinical
Dermatological Images [65.1629311281062]
臨床皮膚画像から機械学習に基づく悪性度予測と病変の同定を検討する。
まず, サブタイプや悪性度に関わらず画像に存在するすべての病変を同定し, その悪性度を推定し, 凝集により, 画像レベルの悪性度も生成する。
論文 参考訳(メタデータ) (2021-04-02T20:52:05Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
アルツハイマー病(AD)に関連する機能的脳ネットワークの微妙な変化を特徴付けることは、疾患進行の早期診断と予測に重要である。
我々は、多重グラフガウス埋め込みモデル(MG2G)と呼ばれる新しいディープラーニング手法を開発した。
我々はMG2Gを用いて、MEG脳ネットワークの内在性潜在性次元を検出し、軽度認知障害(MCI)患者のADへの進行を予測し、MCIに関連するネットワーク変化を伴う脳領域を同定した。
論文 参考訳(メタデータ) (2020-05-08T02:29:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。