論文の概要: Exploratory Methods for Relation Discovery in Archival Data
- arxiv url: http://arxiv.org/abs/2202.11361v1
- Date: Wed, 23 Feb 2022 09:05:52 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-25 00:02:16.195921
- Title: Exploratory Methods for Relation Discovery in Archival Data
- Title(参考訳): アーカイブデータにおける関係発見のための探索的手法
- Authors: Lucia Giagnolini, Marilena Daquino, Francesca Mambelli, Francesca
Tomasi
- Abstract要約: 我々は、探索データ分析を用いてパターンを検出し、特徴を選別し、それらを分類モデルの評価に利用し、新しい関係を予測する。
その結果, 文献情報に基づく関係は, 研究トピックや機関関係に基づく関係よりも高精度に対処できることが示唆された。
- 参考スコア(独自算出の注目度): 1.3764085113103222
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In this article we propose a holistic approach to discover relations in art
historical communities and enrich historians' biographies and archival
descriptions with graph patterns relevant to art historiographic enquiry. We
use exploratory data analysis to detect patterns, we select features, and we
use them to evaluate classification models to predict new relations, to be
recommended to archivists during the cataloguing phase. Results show that
relations based on biographical information can be addressed with higher
precision than relations based on research topics or institutional relations.
Deterministic and a priori rules present better results than probabilistic
methods.
- Abstract(参考訳): 本稿では,美術史社会における関係を解明し,歴史学者の伝記や考古学的記述に,美術史学の探究に関連するグラフパターンを取り入れた総合的アプローチを提案する。
我々は、探索データ分析を用いてパターンを検出し、特徴を抽出し、分類モデルを用いて新しい関係を予測し、カタログ化段階で考古学者に推奨する。
その結果,文献情報に基づく関係は,研究トピックや機関関係に基づく関係よりも高精度に対処できることがわかった。
決定論的および事前規則は確率論的手法よりも優れた結果を示す。
関連論文リスト
- Document-Level Relation Extraction with Relation Correlation Enhancement [10.684005956288347]
ドキュメントレベルの関係抽出(DocRE)は、ドキュメント内のエンティティ間の関係を識別することに焦点を当てたタスクである。
既存のDocREモデルは、しばしば関係関係の相関を見落とし、関係関係の定量的分析を欠いている。
本稿では,関係間の相互依存を明示的に活用することを目的とした関係グラフ手法を提案する。
論文 参考訳(メタデータ) (2023-10-06T10:59:00Z) - Learning Complete Topology-Aware Correlations Between Relations for Inductive Link Prediction [121.65152276851619]
関係性間の意味的相関は本質的にエッジレベルとエンティティ非依存であることを示す。
本研究では,関係関係のトポロジ・アウェア・コレレーションをモデル化するための新しいサブグラフベース手法,TACOを提案する。
RCNのポテンシャルをさらに活用するために, 完全コモンニアインダストリアルサブグラフを提案する。
論文 参考訳(メタデータ) (2023-09-20T08:11:58Z) - Improving (Dis)agreement Detection with Inductive Social Relation
Information From Comment-Reply Interactions [49.305189190372765]
社会関係情報は、テキスト情報以外の(認識の)タスクにおいて補助的な役割を果たすことができる。
本稿では,このような関係情報を(離散化)データから帰納的社会関係グラフに抽出する手法を提案する。
社会関係は,特に長時間のコメント-返信ペアにおいて,(不一致)認識モデルの性能を高めることができる。
論文 参考訳(メタデータ) (2023-02-08T09:09:47Z) - Document-level Relation Extraction with Relation Correlations [15.997345900917058]
文書レベルの関係抽出は,長期問題と複数ラベル問題という,見落とされた2つの課題に直面している。
関係の共起相関を解析し,DocREタスクに初めて導入する。
論文 参考訳(メタデータ) (2022-12-20T11:17:52Z) - Methods for Recovering Conditional Independence Graphs: A Survey [2.2721854258621064]
条件付き独立グラフ(CIグラフ)は、機能関係に関する洞察を得るために使用される。
異なる手法をリストアップし、CIグラフを復元する手法の進歩について研究する。
論文 参考訳(メタデータ) (2022-11-13T06:11:38Z) - Exploring the Limits of Few-Shot Link Prediction in Knowledge Graphs [49.6661602019124]
数発のリンク予測を行うため,本手法の現況を一般化したモデルスペクトルについて検討する。
単純なゼロショットベースライン – 関係性固有の情報を無視する – が驚くほど高いパフォーマンスを実現しているのが分かります。
慎重に構築された合成データセットの実験では、関係の例がいくつかあるだけで、モデルがきめ細かな構造情報を使用するのを基本的に制限することが示されている。
論文 参考訳(メタデータ) (2021-02-05T21:04:31Z) - Mining Feature Relationships in Data [0.0]
特徴関係マイニング(FRM)は、データの連続的または分類的特徴間の象徴的関係を自動的に発見する遺伝的プログラミング手法である。
提案手法は,特徴間の関係を明確に発見することを目的とした,最初の象徴的アプローチである。
実世界の様々なデータセットに対する実証テストにより、提案手法は高品質で単純な特徴関係を見つけることができることを示した。
論文 参考訳(メタデータ) (2021-02-02T07:06:16Z) - Learning Relation Prototype from Unlabeled Texts for Long-tail Relation
Extraction [84.64435075778988]
本稿では,ラベルのないテキストから関係プロトタイプを学習するための一般的なアプローチを提案する。
我々は、エンティティ間の暗黙的な要因として関係プロトタイプを学習する。
私たちは、New York TimesとGoogle Distant Supervisionの2つの公開データセットで実験を行います。
論文 参考訳(メタデータ) (2020-11-27T06:21:12Z) - Addressing Class Imbalance in Scene Graph Parsing by Learning to
Contrast and Score [65.18522219013786]
シーングラフ解析は、画像シーン内のオブジェクトを検出し、それらの関係を認識することを目的としている。
最近の手法は、いくつかの人気のあるベンチマークで高い平均スコアを達成しているが、稀な関係を検出するには失敗している。
本稿では,クラス不均衡問題を解決するために,分類とランキングの新たな統合フレームワークを提案する。
論文 参考訳(メタデータ) (2020-09-28T13:57:59Z) - Type-augmented Relation Prediction in Knowledge Graphs [65.88395564516115]
本稿では,タイプ情報とインスタンスレベルの情報の両方を関係予測に適用するタイプ拡張関係予測(TaRP)手法を提案する。
提案手法は,4つのベンチマークデータセット上での最先端手法よりも高い性能を実現する。
論文 参考訳(メタデータ) (2020-09-16T21:14:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。