Cooperative Behavioral Planning for Automated Driving using Graph Neural
Networks
- URL: http://arxiv.org/abs/2202.11376v1
- Date: Wed, 23 Feb 2022 09:36:15 GMT
- Title: Cooperative Behavioral Planning for Automated Driving using Graph Neural
Networks
- Authors: Marvin Klimke, Benjamin V\"olz, Michael Buchholz
- Abstract summary: This work proposes to leverage machine learning algorithms to optimize traffic flow at urban intersections by jointly planning for multiple vehicles.
Learning-based behavior planning poses several challenges, demanding for a suited input and output representation as well as large amounts of ground-truth data.
We train and evaluate the proposed method in an open-source simulation environment for decision making in automated driving.
- Score: 0.5801044612920815
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Urban intersections are prone to delays and inefficiencies due to static
precedence rules and occlusions limiting the view on prioritized traffic.
Existing approaches to improve traffic flow, widely known as automatic
intersection management systems, are mostly based on non-learning reservation
schemes or optimization algorithms. Machine learning-based techniques show
promising results in planning for a single ego vehicle. This work proposes to
leverage machine learning algorithms to optimize traffic flow at urban
intersections by jointly planning for multiple vehicles. Learning-based
behavior planning poses several challenges, demanding for a suited input and
output representation as well as large amounts of ground-truth data. We address
the former issue by using a flexible graph-based input representation
accompanied by a graph neural network. This allows to efficiently encode the
scene and inherently provide individual outputs for all involved vehicles. To
learn a sensible policy, without relying on the imitation of expert
demonstrations, the cooperative planning task is phrased as a reinforcement
learning problem. We train and evaluate the proposed method in an open-source
simulation environment for decision making in automated driving. Compared to a
first-in-first-out scheme and traffic governed by static priority rules, the
learned planner shows a significant gain in flow rate, while reducing the
number of induced stops. In addition to synthetic simulations, the approach is
also evaluated based on real-world traffic data taken from the publicly
available inD dataset.
Related papers
- DiFSD: Ego-Centric Fully Sparse Paradigm with Uncertainty Denoising and Iterative Refinement for Efficient End-to-End Self-Driving [55.53171248839489]
We propose an ego-centric fully sparse paradigm, named DiFSD, for end-to-end self-driving.
Specifically, DiFSD mainly consists of sparse perception, hierarchical interaction and iterative motion planner.
Experiments conducted on nuScenes and Bench2Drive datasets demonstrate the superior planning performance and great efficiency of DiFSD.
arXiv Detail & Related papers (2024-09-15T15:55:24Z) - Eco-Driving Control of Connected and Automated Vehicles using Neural
Network based Rollout [0.0]
Connected and autonomous vehicles have the potential to minimize energy consumption.
Existing deterministic and methods created to solve the eco-driving problem generally suffer from high computational and memory requirements.
This work proposes a hierarchical multi-horizon optimization framework implemented via a neural network.
arXiv Detail & Related papers (2023-10-16T23:13:51Z) - TraffNet: Learning Causality of Traffic Generation for What-if Prediction [4.604622556490027]
Real-time what-if traffic prediction is crucial for decision making in intelligent traffic management and control.
Here, we present a simple deep learning framework called TraffNet that learns the mechanisms of traffic generation for what-if pre-diction.
arXiv Detail & Related papers (2023-03-28T13:12:17Z) - Automatic Intersection Management in Mixed Traffic Using Reinforcement
Learning and Graph Neural Networks [0.5801044612920815]
Connected automated driving has the potential to significantly improve urban traffic efficiency.
Cooperative behavior planning can be employed to jointly optimize the motion of multiple vehicles.
The present work proposes to leverage reinforcement learning and a graph-based scene representation for cooperative multi-agent planning.
arXiv Detail & Related papers (2023-01-30T08:21:18Z) - An Enhanced Graph Representation for Machine Learning Based Automatic
Intersection Management [0.5161531917413708]
We build upon a previously presented graph-based scene representation and graph neural network to approach the problem using reinforcement learning.
The paper provides an in-depth evaluation of the proposed method against baselines that are commonly used in automatic intersection management.
arXiv Detail & Related papers (2022-07-18T14:53:50Z) - Federated Deep Learning Meets Autonomous Vehicle Perception: Design and
Verification [168.67190934250868]
Federated learning empowered connected autonomous vehicle (FLCAV) has been proposed.
FLCAV preserves privacy while reducing communication and annotation costs.
It is challenging to determine the network resources and road sensor poses for multi-stage training.
arXiv Detail & Related papers (2022-06-03T23:55:45Z) - AI-aided Traffic Control Scheme for M2M Communications in the Internet
of Vehicles [61.21359293642559]
The dynamics of traffic and the heterogeneous requirements of different IoV applications are not considered in most existing studies.
We consider a hybrid traffic control scheme and use proximal policy optimization (PPO) method to tackle it.
arXiv Detail & Related papers (2022-03-05T10:54:05Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
Accurate inference of fine-grained traffic flow from coarse-grained one is an emerging yet crucial problem.
We propose a novel Road-Aware Traffic Flow Magnifier (RATFM) that exploits the prior knowledge of road networks.
Our method can generate high-quality fine-grained traffic flow maps.
arXiv Detail & Related papers (2021-09-29T07:51:49Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
Navigating through intersections is one of the main challenging tasks for an autonomous vehicle.
In this work, we focus on the implementation of a system able to navigate through intersections where only traffic signs are provided.
We propose a multi-agent system using a continuous, model-free Deep Reinforcement Learning algorithm used to train a neural network for predicting both the acceleration and the steering angle at each time step.
arXiv Detail & Related papers (2021-04-28T07:54:40Z) - Autonomous Navigation through intersections with Graph
ConvolutionalNetworks and Conditional Imitation Learning for Self-driving
Cars [10.080958939027363]
In autonomous driving, navigation through unsignaled intersections is a challenging task.
We propose a novel branched network G-CIL for the navigation policy learning.
Our end-to-end trainable neural network outperforms the baselines with higher success rate and shorter navigation time.
arXiv Detail & Related papers (2021-02-01T07:33:12Z) - Multi-Agent Routing Value Iteration Network [88.38796921838203]
We propose a graph neural network based model that is able to perform multi-agent routing based on learned value in a sparsely connected graph.
We show that our model trained with only two agents on graphs with a maximum of 25 nodes can easily generalize to situations with more agents and/or nodes.
arXiv Detail & Related papers (2020-07-09T22:16:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.