論文の概要: Using Deep Reinforcement Learning with Automatic Curriculum earning for
Mapless Navigation in Intralogistics
- arxiv url: http://arxiv.org/abs/2202.11512v1
- Date: Wed, 23 Feb 2022 13:50:01 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-24 16:27:37.649947
- Title: Using Deep Reinforcement Learning with Automatic Curriculum earning for
Mapless Navigation in Intralogistics
- Title(参考訳): イントラロジクスにおけるマップレスナビゲーションのための自動カリキュラムによる深層強化学習
- Authors: Honghu Xue, Benedikt Hein, Mohamed Bakr, Georg Schildbach, Bengt Abel
and Elmar Rueckert
- Abstract要約: 本稿では,倉庫シナリオにおけるマップレスナビゲーション問題を解決するための深層強化学習手法を提案する。
自動誘導車両は、LiDARと前頭RGBセンサーを備え、目標のドームの下に到達することを学ぶ。
NavACL-Qは、学習プロセス全体を大幅に促進し、事前訓練された特徴抽出器は、トレーニング速度を顕著に向上させる。
- 参考スコア(独自算出の注目度): 0.7633618497843278
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a deep reinforcement learning approach for solving a mapless
navigation problem in warehouse scenarios. The automatic guided vehicle is
equipped with LiDAR and frontal RGB sensors and learns to reach underneath the
target dolly. The challenges reside in the sparseness of positive samples for
learning, multi-modal sensor perception with partial observability, the demand
for accurate steering maneuvers together with long training cycles. To address
these points, we proposed NavACL-Q as an automatic curriculum learning together
with distributed soft actor-critic. The performance of the learning algorithm
is evaluated exhaustively in a different warehouse environment to check both
robustness and generalizability of the learned policy. Results in NVIDIA Isaac
Sim demonstrates that our trained agent significantly outperforms the map-based
navigation pipeline provided by NVIDIA Isaac Sim in terms of higher agent-goal
distances and relative orientations. The ablation studies also confirmed that
NavACL-Q greatly facilitates the whole learning process and a pre-trained
feature extractor manifestly boosts the training speed.
- Abstract(参考訳): 本稿では,倉庫シナリオにおけるマップレスナビゲーション問題を解決するための深層強化学習手法を提案する。
自動誘導車両は、LiDARと前頭RGBセンサーを備え、目標のドームの下に到達することを学ぶ。
課題は、学習のためのポジティブなサンプルのばらばらさ、部分的可観測性を備えたマルチモーダルセンサ認識、正確な操舵操作と長いトレーニングサイクルの要求にある。
そこで我々はNavACL-Qを,分散ソフトアクター批判とともに自動カリキュラム学習として提案した。
学習アルゴリズムの性能を異なる倉庫環境で徹底的に評価し、学習方針の堅牢性と一般化性の両方を確認する。
NVIDIA Isaac Simの結果は、トレーニングされたエージェントが、NVIDIA Isaac Simが提供したマップベースのナビゲーションパイプラインをエージェントゴール距離と相対方向で大幅に上回っていることを実証している。
また,NavACL-Qは学習過程全体を大幅に促進し,事前学習した特徴抽出器がトレーニング速度を著しく向上させることを確認した。
関連論文リスト
- TINA: Think, Interaction, and Action Framework for Zero-Shot Vision Language Navigation [11.591176410027224]
本稿では,Large Language Models(LLM)に基づく視覚言語ナビゲーション(VLN)エージェントを提案する。
環境認識におけるLLMの欠点を補うための思考・相互作用・行動の枠組みを提案する。
また,本手法は教師付き学習手法よりも優れ,ゼロショットナビゲーションの有効性を強調した。
論文 参考訳(メタデータ) (2024-03-13T05:22:39Z) - NavCoT: Boosting LLM-Based Vision-and-Language Navigation via Learning
Disentangled Reasoning [101.56342075720588]
Embodied AIの重要な研究課題であるVision-and-Language Navigation (VLN)は、自然言語の指示に従って複雑な3D環境をナビゲートするために、エンボディエージェントを必要とする。
近年の研究では、ナビゲーションの推論精度と解釈可能性を改善することにより、VLNにおける大きな言語モデル(LLM)の有望な能力を強調している。
本稿では,自己誘導型ナビゲーション決定を実現するために,パラメータ効率の高いドメイン内トレーニングを実現する,Navigational Chain-of-Thought (NavCoT) という新しい戦略を提案する。
論文 参考訳(メタデータ) (2024-03-12T07:27:02Z) - Improved LiDAR Odometry and Mapping using Deep Semantic Segmentation and
Novel Outliers Detection [1.0334138809056097]
高速移動プラットフォームのためのLOAMアーキテクチャに基づくリアルタイムLiDARオドメトリーとマッピングのための新しいフレームワークを提案する。
本フレームワークは,ディープラーニングモデルによって生成された意味情報を用いて,ポイント・ツー・ラインとポイント・ツー・プレーンのマッチングを改善する。
高速動作に対するLiDARオドメトリーのロバスト性に及ぼすマッチング処理の改善効果について検討した。
論文 参考訳(メタデータ) (2024-03-05T16:53:24Z) - Robust Path Following on Rivers Using Bootstrapped Reinforcement
Learning [0.0]
本稿では,内陸海域における自律型表面容器(ASV)の航行制御のための深層強化学習(DRL)エージェントを開発した。
最先端のブートストラップ付きQ-ラーニングアルゴリズムと多用途のトレーニング環境ジェネレータを組み合わせることで、堅牢で正確な舵制御を実現する。
論文 参考訳(メタデータ) (2023-03-24T07:21:27Z) - Visual-Language Navigation Pretraining via Prompt-based Environmental
Self-exploration [83.96729205383501]
本稿では,言語埋め込みの高速適応を実現するために,プロンプトベースの学習を導入する。
我々のモデルは、VLNやREVERIEを含む多様な視覚言語ナビゲーションタスクに適応することができる。
論文 参考訳(メタデータ) (2022-03-08T11:01:24Z) - Adversarial Reinforced Instruction Attacker for Robust Vision-Language
Navigation [145.84123197129298]
自然言語に基づくナビゲーションタスクでは,言語指導が重要な役割を担っている。
より堅牢なナビゲータを訓練し、長い指導から重要な要素を動的に抽出する。
具体的には,航法士が間違った目標に移動することを誤認することを学習する動的強化命令攻撃装置(DR-Attacker)を提案する。
論文 参考訳(メタデータ) (2021-07-23T14:11:31Z) - Deep Surrogate Q-Learning for Autonomous Driving [17.30342128504405]
本稿では,自律運転における車線変更行動学習のためのSurrogate Q-learningを提案する。
このアーキテクチャは、Scene-centric Experience Replayと呼ばれる新しいリプレイサンプリング技術に繋がることを示す。
また,本手法は実高Dデータセット上のポリシーを学習することで,実世界のRLシステムの適用性を向上させる。
論文 参考訳(メタデータ) (2020-10-21T19:49:06Z) - Embodied Visual Navigation with Automatic Curriculum Learning in Real
Environments [20.017277077448924]
NavACLは、ナビゲーションタスクに適した自動カリキュラム学習の方法である。
NavACLを用いて訓練した深層強化学習剤は、均一サンプリングで訓練した最先端エージェントよりも有意に優れていた。
我々のエージェントは、未知の乱雑な屋内環境から、RGB画像のみを使用して意味的に特定されたターゲットへ移動することができる。
論文 参考訳(メタデータ) (2020-09-11T13:28:26Z) - Active Visual Information Gathering for Vision-Language Navigation [115.40768457718325]
視覚言語ナビゲーション(VLN)は、エージェントがフォトリアリスティックな環境の中でナビゲーションの指示を行うためのタスクである。
VLNの重要な課題の1つは、曖昧な指示による不確実性を緩和し、環境の観察を不十分にすることで、堅牢なナビゲーションを行う方法である。
この研究は、人間のナビゲーション行動からインスピレーションを得て、よりインテリジェントなVLNポリシーのためのアクティブな情報収集能力を持つエージェントを提供する。
論文 参考訳(メタデータ) (2020-07-15T23:54:20Z) - Auto-Rectify Network for Unsupervised Indoor Depth Estimation [119.82412041164372]
ハンドヘルド環境に現れる複雑な自我運動が,学習深度にとって重要な障害であることが確認された。
本稿では,相対回転を除去してトレーニング画像の修正を効果的に行うデータ前処理手法を提案する。
その結果、従来の教師なしSOTA法よりも、難易度の高いNYUv2データセットよりも優れていた。
論文 参考訳(メタデータ) (2020-06-04T08:59:17Z) - Deep Learning based Pedestrian Inertial Navigation: Methods, Dataset and
On-Device Inference [49.88536971774444]
慣性測定ユニット(IMU)は小型で安価でエネルギー効率が良く、スマートデバイスや移動ロボットに広く使われている。
正確で信頼性の高い歩行者ナビゲーションをサポートするために慣性データをエクスプロイトすることは、新しいインターネット・オブ・シングス・アプリケーションやサービスにとって重要なコンポーネントである。
我々は、深層学習に基づく慣性ナビゲーション研究のための最初の公開データセットであるOxIOD(OxIOD)を提示、リリースする。
論文 参考訳(メタデータ) (2020-01-13T04:41:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。